
1

1

Testing

All material © Jonathan Aldrich
and William L Scherlis 2007
No part may be copied or used
without written permission.

Primary source: Kaner, Falk, Nguyen.
Testing Computer Software (2nd Edition).

Jonathan Aldrich
Assistant Professor

Institute for Software Research

School of Computer Science
Carnegie Mellon University

jonathan.aldrich@cs.cmu.edu
+1 412 268 7278

17171717----654/17654/17654/17654/17----754754754754
Analysis of Software ArtifactsAnalysis of Software ArtifactsAnalysis of Software ArtifactsAnalysis of Software Artifacts Spring 2007

2
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we assess our test suites?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

2

4
17-654 Spring 2007 –Aldrich © 2007

1. Testing: What and Why

• What is testing?
� Direct execution of code on test data in a controlled environment

• Discussion: Goals of testing
� To reveal failures
• Most important goal of testing

� To assess quality
• Difficult to quantify, but still important

� To clarify the specification
• Always test with respect to a spec

• Testing shows inconsistency

• Either spec or program could be wrong

� To learn about program
• How does it behave under various conditions?

• Feedback to rest of team goes beyond bugs

� To verify contract
• Includes customer, legal, standards

5
17-654 Spring 2007 –Aldrich © 2007

Testing is NOT to show correctness

• Theory: “Complete testing” is impossible
� For realistic programs there is always untested input
� The program may fail on this input

• Psychology: Test to find bugs, not to show correctness
� Showing correctness: you fail when program does
� Psychology experiment
• People look for blips on screen
• They notice more if rewarded for finding blips than if penalized for
giving false alarms

� Testing for bugs is more successful than testing for correctness
• [Teasley, Leventhal, Mynatt & Rohlman]

3

6
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we assess our test suites?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

7
17-654 Spring 2007 –Aldrich © 2007

2. What do we test – the Focus of Concern

Context of use

Subsystem
Subsystem

Integration

Sensor
Affector

Sensor

Unit

Unit

System

Examples of systems in context
• Mars rover
• Cell phone
• Clothes washing machine
• Point of sale system
• Telecom switch
• Software development tool

4

8
17-654 Spring 2007 –Aldrich © 2007

The Focus of Concern

Context of use

Subsystem
Subsystem

Integration

Sensor
Affector

Sensor

Unit

Unit

System

Levels of Testing
• User testing, field testing
• System testing

• With or without hardware
• Integration testing
• Unit testing

9
17-654 Spring 2007 –Aldrich © 2007

Unit Tests

• Unit tests are whitebox tests written by developers, and
designed to verify small units of program functionality.

• Key Metaphor: I.C. Testing
� Integrated Circuits are tested individually for functionality
before the whole circuit is tested.

• Definitions
� Whitebox – Unit tests are written with full knowledge of
implementation details.

� Developers – Unit tests are written by you, the developer,
concurrently with implementation.

� Small Units – Unit tests should isolate one piece of software at a
time.
• Individual methods and classes

� Verify – Make sure you built ‘the software right.’ Testing
against the contract.
• Contrast this with validation

[source: Nels Beckman]

5

10
17-654 Spring 2007 –Aldrich © 2007

Contracts and Unit Tests

• A method’s contract is a statement of the responsibilities of that
method, and the responsibilities of the code that calls it.
� Analogy: legal contracts
• If you pay me exactly $30,000
• I will build a new room on your house

� Helps to pinpoint responsibility

• Examples:

/** Applies a move to a board. This assumes that the move is one that
was returned by getAllMoves. Upon applying the move, it will also
update the value of the board and switch the board's turn. */

public void applyMove(Move mv) { … }

/*@ requires array != null
@
@ ensures \result == (\sum int j; 0<=j && j<array.length; array[j])
@*/

public float sum(int array[], int len) {… }

[source: Nels Beckman]

11
17-654 Spring 2007 –Aldrich © 2007

Objections to Unit Tests

• Objection: Writing unit tests takes too long
� Must pay as you go, rather than pay at the end

• Answer: Unit tests raise productivity overall
� Steady productivity throughout the development cycle
� Without unit testing, productivity dives when testing starts
• Must isolate bugs to their source
• Must re-learn old code to debug it
• Must often redesign code that was fundamentally broken

• Objection: We pay testers to write our tests
• Answer: Unit tests are for developers

� Unit tests help you get your code working faster
• There’s egg on your face if you check in bad code – if you haven’t
tested it, how do you know?
• Do you really want to be paid to spend hours with a debugger?

� Testers still need to do functional, acceptance, user testing, etc.

• Unit tests help you even if you only do them yourself
� But a culture of unit testing has additional benefits
• regression tests, source control, integration testing

[source: Nels Beckman]

6

12
17-654 Spring 2007 –Aldrich © 2007

Unit Testing vs. printf, debuggers

• Can’t you just use System.out.println?
�Low-tech debug method
�Output has to be scanned manually to see if it’s correct

• Can’t you just use a debugger?
�A very manual process
�Can’t easily use it for regression

[source: Donna Malayeri]

13
17-654 Spring 2007 –Aldrich © 2007

Test-Driven Development

•Write the tests before the code

•Write code only when an automated test fails

• If you find a bug through other means, first write a test that
fails, then fix the bug
�Bug won’t resurface later

• Run tests as often as possible, ideally every time the code is
changed

[source: Donna Malayeri]

7

15
17-654 Spring 2007 –Aldrich © 2007

Unit Testing Pitfalls

• Random testing
� Good for estimating quality when you know the input
distribution

� Bad for finding defects

• Writing tests without checking the output
� Can find exceptions and crashes – but was the input valid?
� Can check for output change – but was the original output right?
was the change intended?

� Moral: always check the input!

• Testing only valid inputs
� Need to response to bad data (see especially security)

• Relying on code coverage for good testing
� Bad coverage tells you your test suite is inadequate
� But good coverage is not a guarantee of adequacy
• Better coverage criteria: cover all important functional cases,
borderline cases in the specification, and invalid inputs
• More on these techniques later

17
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Unit
Client

Examples: Database,
Network,

Interconnected systems

Example: Network client with
GUI

Back end
services

Code
to be
tested

8

18
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Stub Unit
Driver

Test
support

code

Test
support

code

Substitute:
Test

support
code

Code
to be
tested

22
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Stub

Unit

Driver

ClusterCode
to be
tested

Unit

9

23
17-654 Spring 2007 –Aldrich © 2007

Techniques for Unit Testing 1: Scaffolding

• Use “scaffold” to simulate external code

• External code – scaffold points
1. Client code
2. Underlying service code

1. Client API
� Model the software client for the service
being tested

� Create a test driver
� Object-oriented approach:

• Test individual calls and sequences of calls

Testers write
driver code

Unit
Driver

24
17-654 Spring 2007 –Aldrich © 2007

Techniques for Unit Testing 1: Scaffolding

• Use “scaffold” to simulate external code

• External code – scaffold points
1. Client code
2. Underlying service code

2. Service code
� Underlying services

• Communication services
• Model behavior through a communications
interface

• Database queries and transactions
• Network/web transactions
• Device interfaces

• Simulate device behavior and failure modes
• File system

• Create file data sets
• Simulate file system corruption

• Etc

� Create a set of stub services or mock objects
• Minimal representations of APIs for these services Stub

Testers write
stub code

Unit

10

25
17-654 Spring 2007 –Aldrich © 2007

Scaffolding

• Purposes
� Catch bugs early

• Before client code or services are available

� Limit the scope of debugging
• Localize errors

� Improve coverage
• System-level tests may only cover 70% of code [Massol]
• Simulate unusual error conditions – test internal robustness

� Validate internal interface/API designs
• Simulate clients in advance of their development
• Simulate services in advance of their development

� Capture developer intent (in the absence of specification documentation)
• A test suite formally captures elements of design intent
• Developer documentation

� Enable division of effort
• Separate development / testing of service and client

� Improve low-level design
• Early attention to ability to test – “testability”

Stub Unit
Driver

26
17-654 Spring 2007 –Aldrich © 2007

Testing Harnesses

• Testing harnesses are tools that help manage and run your
unit tests.

Help achieve three properties of good unit tests:
• Automatic

� Tests should be easy to run and check for correct completion.
This allows developers to quickly confirm their code is working
after a change.

• Repeatable
� Any developer can run the tests and they will work right away.

• Independent
� Tests can be run in any order and they will still work.

[source: Nels Beckman]

11

27
17-654 Spring 2007 –Aldrich © 2007

JUnit: A Java Unit Testing Harness

• Features
� One click runs all tests
� Visual confirmation of
success or failure.

� Source of failure is
immediately obvious.

• JUnit framework interface
� @Test annotation marks a test
for the harness

� org.junit.Assert contains
functions to check results.

[source: Nels Beckman]

28
17-654 Spring 2007 –Aldrich © 2007

A JUnit Test Case

public class SampleTest {
private List<String> emptyList;

@Before
public void setUp() {

emptyList = new ArrayList<String>();
}

@After
public void tearDown() {

emptyList = null;
}

@Test
public void testEmptyList() {

assertEquals("Empty list should have 0 elements",
0, emptyList.size());

}
}

12

30
17-654 Spring 2007 –Aldrich © 2007

Helpful JUnit Assert Statements

• assertTrue(boolean condition)
• assertFalse(boolean condition)

� Assert some condition is true (or false)

• assertEquals(Object expected,
Object actual)

� Check that some value is equal to another

• assertEquals(float expected,
float actual,
float delta)

� Used for so that floating point equality is unnecessary.

• assertSame(Object expected, Object actual)
� Tests for two objects are the same reference (identical) in
memory.

• assertNull(java.lang.Object object)
� Asserts that a reference is null.

• assertNotNull(String message, Object object)
� Many ‘not’ asserts exists.
� Most asserts have an optional message that can be printed.

31
17-654 Spring 2007 –Aldrich © 2007

Other Helpful JUnit Features

• @BeforeClass
� Run once before all test methods in class.

• @AfterClass
� Run once after all test methods in class.

• Together, these methods are used for setting up
computationally expensive test elements.
� E.g., database, file on disk, network…

• @Before
� Run before each test method.

• @After
� Run after each test method.

• Make tests independent by setting and resetting your
testing environment.
� E.g., creating a fresh object

• @Test(expected=ParseException.class)
� When you expect an exception

13

32
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we assess our test suites?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

34
17-654 Spring 2007 –Aldrich © 2007

Discussion: What makes a test case valuable?

• Value-driven testing
� Focus on tests that have biggest benefit per unit cost

• Value is driven by quality improvement
� Some value of information as well

• Value Factors
� Does it find a bug?
� How severe is the bug?
� How common is the bug?
� How easy is it to fix the bug?
� Is it distinct from other tests?
• Unique bug? Unique code? Unique domain coverage?

� How general is it?
� What did we learn about the program?

• Much of this is hard to predict in advance!

14

35
17-654 Spring 2007 –Aldrich © 2007

How do we select a set of good tests

• Test coverage

�Why “coverage”?
• All inputs cannot be tested.

� Consider strategy for testing these systems:
• Visual Studio, Eclipse, etc.
• Automotive navigation/communication system – with many
configurations
• An operating system
• An e-commerce container framework (J2EE, .net) and its
components

� Only very rarely can we test exhaustively.
• Deterministic embedded controllers

36
17-654 Spring 2007 –Aldrich © 2007

Test coverage – Ideal and Real

• An Ideal Test Suite
� Uncovers all errors in code
• That are detectable through testing

� Uncovers all errors in requirements capture
• All scenarios covered
• Non-functional attributes: performance, code safety, security, etc.

� Minimum size and complexity
� Uncovers errors early in the process
• Ideally when code is being written (“test cases first”)

• A Real Test Suite
� Uncovers some portion of errors in code
� Has errors of its own
� Assists in exploratory testing for validation
� Does not help very much with respect to non-functional attributes
� Includes many regression tests
• Inserted after errors are repaired to ensure they won’t reappear

15

37
17-654 Spring 2007 –Aldrich © 2007

Ways of analyzing coverage

• Code visibility –white box or glass box
• Visibility to internal code elements – better for non-functional
attributes
• Can use design information to guide creation and analysis of test
suites
• Can test internal elements directly

• Code coverage analysis

• Code visibility – black box
• Cannot see internal code elements of the service being tested
• Test through the public API – better for functional attributes

• Domain coverage analysis

38
17-654 Spring 2007 –Aldrich © 2007

White Box: Statement Coverage

• Statement coverage
� What portion of program statements
(nodes) are touched by test cases

• Advantages
� Test suite size linear in size of code

� Coverage easily assessed

• Issues
� Dead code is not reached

� May require some sophistication to
select input sets (McCabe basis paths)

� Fault-tolerant error-handling code
may be difficult to “touch”

� Metric: Could create incentive to
remove error handlers!

16

39
17-654 Spring 2007 –Aldrich © 2007

White Box: Branch Coverage

• Branch coverage
� What portion of condition branches are
covered by test cases?

� Or: What portion of relational expressions
and values are covered by test cases?
• Condition testing (Tai)

� Multicondition coverage – all boolean
combinations of tests are covered

• Advantages
� Test suite size and content derived
from structure of boolean expressions

� Coverage easily assessed

• Issues
� Dead code is not reached

� Fault-tolerant error-handling code
may be difficult to “touch”

40
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

17

41
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

42
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

18

43
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

44
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

19

45
17-654 Spring 2007 –Aldrich © 2007

White Box: Assessing structural coverage

• Coverage assessment tools
� Track execution of code by test cases
� Techniques
• Modified runtime environment (e.g., special JVM)
• Source code transformation

• Count visits to statements
� Develop reports with respect to specific coverage criteria

• Example: EclEmma – Eclipse plugin for JUnit test coverage

46
17-654 Spring 2007 –Aldrich © 2007

EclEmma in Eclipse

• Breakdown by package,
class, and method

• Coverage
� Classes
� Methods
� Statements
� Instructions

• Graphical and numerical
presentation

20

47
17-654 Spring 2007 –Aldrich © 2007

Clover in Eclipse

• Coverage report in editor window
� red: not covered
� yellow: covered once
� green: covered multiple times

49
17-654 Spring 2007 –Aldrich © 2007

Unit Testing and Coverage Takeaways

• Testing is direct execution of code on test data in a
controlled environment
� Testing can help find bugs, assess quality, clarify specs, learn
about programs, and verify contracts

� Testing cannot verify correctness

• Unit testing has multiple benefits
� Clarifies specification
� Isolates defects
� Finds errors as you write code
� Avoids rework

• Multiple white box coverage critieria
� Useful to tell you where you are missing tests
� Not sufficient to guarantee adequacy

