17-654/17-754
Analysis of Software Artifacts Spring 2007

Testing

All material © Jonathan Aldrich

and William L Scherlis 2007 Jonathan Aldrich
No part may be copied or used Assistant Professor
without written permission. Institute for Software Research

School of Computer Science
Carnegie Mellon University

Primary source: Kaner, Falk, Nguyen.

Testing Computer Software (2nd Edition). jonathan.aldrich@cs.cmu.edu
+1 412 268 7278

Testing — The Big Questions

1. What is testing?
= And why do we test?

2. What do we test?
= Levels of structure: unit, integration, system...

3. How do we select a set of good tests?
= Value-driven testing
= Functional (black-box) testing
= Structural (white-box) testing

4. How do we assess our test suites?
= Coverage, Mutation, Capture/Recapture...

5. Practices for testability
= What are known best test practices?
= How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
« What are complementary approaches?
e Inspections
e Static and dynamic analysis

17-654 Spring 2007 -Aldrich © 2007

1. Testing: What and Why

What is testing?
= Direct execution of code on test data in a controlled environment

Discussion: Goals of testing
= To reveal failures
e Most important goal of testing

= To assess quality
o Difficult to quantify, but still important

= To clarify the specification
o Always test with respect to a spec
e Testing shows inconsistency
e Either spec or program could be wrong

= To learn about program
e How does it behave under various conditions?
e Feedback to rest of team goes beyond bugs

= To verify contract
e Includes customer, legal, standards

17-654 Spring 2007 -Aldrich © 2007

Testing is NOT to show correctness

e Theory: “Complete testing” is impossible
= For realistic programs there is always untested input
= The program may fail on this input

e Psychology: Test to find bugs, not to show correctness
= Showing correctness: you fail when program does
= Psychology experiment
e People look for blips on screen
e They notice more if rewarded for finding blips than if penalized for
giving false alarms

= Testing for bugs is more successful than testing for correctness
e [Teasley, Leventhal, Mynatt & Rohiman]

17-654 Spring 2007 -Aldrich © 2007

Testing — The Big Questions

1. What is testing?
= And why do we test?

2. What do we test?
= Levels of structure: unit, integration, system...

3. How do we select a set of good tests?
= Value-driven testing
= Functional éblack—boxg testing
= Structural (white-box) testing

4. How do we assess our test suites?
= Coverage, Mutation, Capture/Recapture...

5. Practices for testability
= What are known best test practices?
= How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
« What are complementary approaches?
e Inspections
e Static and dynamic analysis

17-654 Spring 2007 -Aldrich © 2007

2. What do we test - the Focus of Concern

Examples of systems in context
e Mars rover

e Cell phone

¢ Clothes washing machine

¢ Point of sale system

e Telecom switch

* Software development tool

17-654 Spring 2007 -Aldrich © 2007

The Focus of Concern

Levels of Testing
e User testing, field testing
e System testing

e With or without hardware
¢ Integration testing
e Unit testing

17-654 Spring 2007 -Aldrich © 2007

Unit Tests

e Unit tests are whitebox tests written by developers, and
designed to verify small units of program functionality.

e Key Metaphor: I.C. Testing

= Integrated Circuits are tested individually for functionality
before the whole circuit is tested.

e Definitions

= Whitebox - Unit tests are written with full knowledge of
implementation details.

= Developers - Unit tests are written by you, the developer,
concurrently with implementation.

. ?mall Units - Unit tests should isolate one piece of software at a
ime.

e Individual methods and classes

= Verify — Make sure you built ‘the software right.” Testing
against the contract.

e Contrast this with validation

[source: Nels Beckman]

17-654 Spring 2007 -Aldrich © 2007

9

Contracts and Unit Tests

¢ A method’s contract is a statement of the responsibilities of that
method, and the responsibilities of the code that calls it.
= Analogy: legal contracts
¢ If you pay me exactly $30,000
o I will build a new room on your house
= Helps to pinpoint responsibility

e Examples:

/** Applies a move to a board. This assumes that the move is one that
was returned by getAllMoves. Upon applying the move, it will also
update the value of the board and switch the board's turn. */

public void applyMove(Move mv) { ... }

/*@ requires array !'= null
@
@ ensures \result == (\sum int j; 0<=j && j<array.length; array[j])
@*/
public float sum(int array[], int len) {... }
[source: Nels Beckman]

10
17-654 Spring 2007 -Aldrich © 2007

Objections to Unit Tests

e Objection: Writing unit tests takes too long
= Must pay as you go, rather than pay at the end
e Answer: Unit tests raise productivity overall
= Steady productivity throughout the development cycle
= Without unit testing, productivity dives when testing starts
e Must isolate bugs to their source
e Must re-learn old code to debug it
e Must often redesign code that was fundamentally broken

e Objection: We pay testers to write our tests
e Answer: Unit tests are for developers

= Unit tests help you get your code working faster

e There’s egg on your face if you check in bad code - if you haven't
tested it, how do you know?

e Do you really want to be paid to spend hours with a debugger?
= Testers still need to do functional, acceptance, user testing, etc.

¢ Unit tests help you even if you only do them yourself
= But a culture of unit testing has additional benefits
® regression tests, source control, integration testing

[source: Nels Beckman] 11
17-654 Spring 2007 -Aldrich © 2007

Unit Testing vs. printf, debuggers

® Can’t you just use System.out.printin?
= | ow-tech debug method
® Qutput has to be scanned manually to see if it's correct

® Can't you just use a debugger?
= A very manual process
= Can't easily use it for regression

[source: Donna Malayeri] ,,
17-654 Spring 2007 -Aldrich © 2007

Test-Driven Development
® Write the tests before the code
® Write code only when an automated test fails

e If you find a bug through other means, first write a test that
fails, then fix the bug
=" Bug won't resurface later

® Run tests as often as possible, ideally every time the code is
changed

[source: Donna Malayeri] ;5
17-654 Spring 2007 -Aldrich © 2007

Unit Testing Pitfalls

e Random testing

= Good for estimating quality when you know the input
distribution

= Bad for finding defects

e Writing tests without checking the output
= Can find exceptions and crashes - but was the input valid?

= Can check for output change - but was the original output right?
was the change intended?

= Moral: always check the input!

e Testing only valid inputs
= Need to response to bad data (see especially security)

e Relying on code coverage for good testing
= Bad coverage tells you your test suite is inadequate
= But good coverage is not a guarantee of adequacy
e Better coverage criteria: cover all important functional cases,
borderline cases in the specification, and invalid inputs
e More on these techniques later

15
17-654 Spring 2007 -Aldrich © 2007

Unit Test and Scaffolding

Client

Code
to be
tested

Example: Network client with
GUI

Examples: Database,
Network,
Interconnected systems

17
17-654 Spring 2007 -Aldrich © 2007

Unit Test and Scaffolding

Stt'b Unit Driv?r

Code
to be
tested

Substitute:
Test
support
code

18
17-654 Spring 2007 -Aldrich © 2007

Unit Test and Scaffolding

Code
to be
tested

22
17-654 Spring 2007 -Aldrich © 2007

Techniques for Unit Testing 1: Scaffolding

e Use “scaffold” to simulate external code

e External code - scaffold points
1. Client code
2. Underlying service code

1. Client API

Model the software client for the service
being tested

= Create a test driver

= Object-oriented approach:
e Test individual calls and sequences of calls

Testers write
driver code

23

17-654 Spring 2007 -Aldrich © 2007

Techniques for Unit Testing 1: Scaffolding

e Use “scaffold” to simulate external code

e External code - scaffold points
1. Client code

C‘ 2. Underlying service code
2. Service code

= Underlying services
e Communication services
e Model behavior through a communications *#

interface
e Database queries and transactions

e Network/web transactions

e Device interfaces .
e Simulate device behavior and failure modes Testers write
e File system
stub code

e Create file data sets
e Simulate file system corruption

e Ftc
= Create a set of stub services or mock objects
e Minimal representations of APIs for these services

24

17-654 Spring 2007 -Aldrich © 2007

Scaffolding

e Purposes

= Catch bugs early

¢ Before client code or services are available Unit
Stub Driver

= Limit the scope of debugging
e Localize errors

= Improve coverage
e System-level tests may only cover 70% of code [Massol]
¢ Simulate unusual error conditions - test internal robustness

= Validate internal interface/API designs
e Simulate clients in advance of their development
e Simulate services in advance of their development

= Capture developer intent (in the absence of specification documentation)
¢ A test suite formally captures elements of design intent
e Developer documentation

= Enable division of effort
e Separate development / testing of service and client

= Improve low-level design
e Early attention to ability to test - “testability”

17-654 Spring 2007 -Aldrich © 2007 25
Testing Harnesses
e Testing harnesses are tools that help manage and run your
unit tests.
Help achieve three properties of good unit tests:
e Automatic
= Tests should be easy to run and check for correct completion.
This allows developers to quickly confirm their code is working
after a change.
e Repeatable
= Any developer can run the tests and they will work right away.
e Independent
= Tests can be run in any order and they will still work.
[source: Nels Beckman] 26

17-654 Spring 2007 -Aldrich © 2007

10

JUnit: A Java Unit Testing Harness

e Features
= One click runs all tests
= Visual confirmation of
success or failure.
= Source of failure is
immediately obvious.

e JUnit framework interface
= @Test annotation marks a test
for the harness
= org.junit.Assert contains
functions to check results.

17-654 Spring 2007 -Aldrich © 2007

a2 A |%

Runs: &8 B Errors: 0 H Failures: 0

Runs: 7/7 B Errors: 0 H Failures: 1

F_I edu.calpoly.csc435.othello. test. options. Construc
EEEI edu.calpoly.csc435.othello. test. options. CloneTes
gF.'—_l cloneDefaultOptions

|

; EiE] edu.calpoly.csc435.othello. test. othelloboard. App

[source: Nels Beckman]

27

A JUnit Test Case

public class SampleTest {
private List<String> emptyList;

@Before
public void setUp() {

emptyList = new ArrayList<String>();

@After
public void tearDown() {
emptyList = null;

@Test
public void testEmptyList() {

assertEquals("Empty list should have 0 elements",

0, emptyList.size());

17-654 Spring 2007 -Aldrich © 2007

28

11

Helpful JUnit Assert Statements

e assertTrue (boolean condition)
* assertFalse (boolean condition)
= Assert some condition is true (or false)

* assertEquals (Object expected,
Object actual)
= Check that some value is equal to another

* assertEquals (float expected,
float actual,
float delta)
= Used for so that floating point equality is unnecessary.

* assertSame (Object expected, Object actual)
= Tests for two objects are the same reference (identical) in
memory.

* assertNull (java.lang.Object object)
= Asserts that a reference is null.

* assertNotNull (String message, Object object)
« Many "not” asserts exists.)
= Most asserts have an optional message that can be printed.

30
17-654 Spring 2007 -Aldrich © 2007

Other Helpful JUnit Features

e @BeforeClass

= Run once before all test methods in class.
o @AfterClass

= Run once after all test methods in class.

e Together, these methods are used for setting up
computationally expensive test elements.
= E.g., database, file on disk, network...

o @Before

= Run before each test method.
o @After

= Run after each test method.

e Make tests independent by setting and resetting your
testing environment.
= E.g., creating a fresh object

o @Test(expected=ParseException.class)
= When you expect an exception

31
17-654 Spring 2007 -Aldrich © 2007

12

Testing — The Big Questions

1.

. Practices for testability

What is testing?
= And why do we test?

What do we test?
= Levels of structure: unit, integration, system...

How do we select a set of good tests?
= Value-driven testing

= Functional (black-box) testing

= Structural (white-box) testing

How do we assess our test suites?
= Coverage, Mutation, Capture/Recapture...

= What are known best test practices?
= How does testing integrate into lifecycle and metrics?

What are the limits of testing?

« What are complementary approaches?
e Inspections
e Static and dynamic analysis

32

17-654 Spring 2007 -Aldrich © 2007

Discussion: What makes a test case valuable?

e Value-driven testing
= Focus on tests that have biggest benefit per unit cost

¢ Value is driven by quality improvement
= Some value of information as well

¢ Value Factors
= Does it find a bug?
= How severe is the bug?
= How common is the bug?
= How easy is it to fix the bug?
= Is it distinct from other tests?

e Unique bug? Unique code? Unique domain coverage?

= How general is it?
= What did we learn about the program?

e Much of this is hard to predict in advance!

34

17-654 Spring 2007 -Aldrich © 2007

13

How do we select a set of good tests

e Test coverage

= Why “coverage”?
e All inputs cannot be tested.

= Consider strategy for testing these systems:
e Visual Studio, Eclipse, etc.
e Automotive navigation/communication system - with many
configurations
e An operating system
e An e-commerce container framework (J2EE, .net) and its
components

= Only very rarely can we test exhaustively.

e Deterministic embedded controllers

35

17-654 Spring 2007 -Aldrich © 2007

Test coverage - Ideal and Real

e An Ideal Test Suite
= Uncovers all errors in code
e That are detectable through testing
= Uncovers all errors in requirements capture
e All scenarios covered
¢ Non-functional attributes: performance, code safety, security, etc.
= Minimum size and complexity
= Uncovers errors early in the process
e Ideally when code is being written (“test cases first"”)

e A Real Test Suite
= Uncovers some portion of errors in code
= Has errors of its own
= Assists in exploratory testing for validation
= Does not help very much with respect to non-functional attributes
= Includes many regression tests
e Inserted after errors are repaired to ensure they won't reappear

36

17-654 Spring 2007 -Aldrich © 2007

14

Ways of analyzing coverage

e Code visibility —white box or glass box
e Visibility to internal code elements - better for non-functional
attributes
e Can use design information to guide creation and analysis of test
suites
e Can test internal elements directly

e Code coverage analysis

e Code visibility — black box
e Cannot see internal code elements of the service being tested
e Test through the public API - better for functional attributes

e Domain coverage analysis

37
17-654 Spring 2007 -Aldrich © 2007

White Box: Statement Coverage

o Statement coverage

= What portion of program statements
(nodes) are touched by test cases

e Advantages
= Test suite size linear in size of code
= Coverage easily assessed

e Issues

= Dead code is not reached

= May require some sophistication to
select input sets (McCabe basis paths)

= Fault-tolerant error-handling code
may be difficult to “touch”

= Metric: Could create incentive to
remove error handlers!

38
17-654 Spring 2007 -Aldrich © 2007

15

White Box: Branch Coverage

e Branch coverage

= What portion of condition branches are
covered by test cases?

= Or: What portion of relational expressions
and values are covered by test cases?

e Condition testing (Tai)

= Multicondition coverage - all boolean

combinations of tests are covered

e Advantages
= Test suite size and content derived
from structure of boolean expressions
= Coverage easily assessed
e Issues
= Dead code is not reached

= Fault-tolerant error-handling code
may be difficult to “touch”

17-654 Spring 2007 -Aldrich © 2007

39

White Box: Path Coverage

o Path coverage
= What portion of all possible paths through
the program are covered by tests?
= Loop testing: Consider representative and
edge cases:
e Zero, one, two iterations
e If there is a bound n: n-1, n, n+1 iterations
o Nested loops/conditionals from inside out

¢ Advantages 4

= Better coverage of logical flows ‘ - &

e Disadvantages

= Not all paths are possible, or necessary
e What are the significant paths?

= Combinatorial explosion in cases unless ’

careful choices are made
e E.g., sequence of n if tests can yield .
up to 2~n possible paths
= Assumption that
program structure
is basically sound

17-654 Spring 2007 -Aldrich © 2007

40

16

White Box: Path Coverage

 Path coverage
= What portion of all possible paths through
the program are covered by tests?
= Loop testing: Consider representative and
edge cases:
e Zero, one, two iterations
e If there is a bound n: n-1, n, n+1 iterations
o Nested loops/conditionals from inside out

e Advantages
= Better coverage of logical flows

e Disadvantages
= Not all paths are possible, or necessary
e What are the significant paths?
= Combinatorial explosion in cases unless
careful choices are made
e E.g., sequence of n if tests can yield
up to 2~n possible paths
= Assumption that
program structure
is basically sound

17-654 Spring 2007 -Aldrich © 2007

41

White Box: Path Coverage

o Path coverage
= What portion of all possible paths through
the program are covered by tests?
= Loop testing: Consider representative and
edge cases:
e Zero, one, two iterations
e If there is a bound n: n-1, n, n+1 iterations
¢ Nested loops/conditionals from inside out

e Advantages
= Better coverage of logical flows

e Disadvantages
= Not all paths are possible, or necessary
e What are the significant paths?
= Combinatorial explosion in cases unless
careful choices are made
e E.g., sequence of n if tests can yield
up to 2~n possible paths
= Assumption that
program structure
is basically sound

17-654 Spring 2007 -Aldrich © 2007

v

O——o

42

17

White Box: Path Coverage

 Path coverage
= What portion of all possible paths through
the program are covered by tests?
= Loop testing: Consider representative and
edge cases:
e Zero, one, two iterations
e If there is a bound n: n-1, n, n+1 iterations
o Nested loops/conditionals from inside out

e Advantages
= Better coverage of logical flows

e Disadvantages
= Not all paths are possible, or necessary
e What are the significant paths?
= Combinatorial explosion in cases unless
careful choices are made
e E.g., sequence of n if tests can yield s.
up to 2~n possible paths
= Assumption that
program structure
is basically sound

43
17-654 Spring 2007 -Aldrich © 2007

White Box: Path Coverage

o Path coverage
= What portion of all possible paths through
the program are covered by tests?
= Loop testing: Consider representative and
edge cases:
e Zero, one, two iterations
e If there is a bound n: n-1, n, n+1 iterations
¢ Nested loops/conditionals from inside out

e Advantages
= Better coverage of logical flows

e Disadvantages
= Not all paths are possible, or necessary
e What are the significant paths?
= Combinatorial explosion in cases unless
careful choices are made
e E.g., sequence of n if tests can yield s.
up to 2~n possible paths
= Assumption that
program structure
is basically sound

a4
17-654 Spring 2007 -Aldrich © 2007

18

White Box: Assessing structural coverage

e Coverage assessment tools
= Track execution of code by test cases
= Techniques

e Modified runtime environment (e.g., special JVM)
e Source code transformation

e Count visits to statements

= Develop reports with respect to specific coverage criteria

e Example: EclEmma - Eclipse plugin for JUnit test coverage

[21 Problems | @ Javadoc | [, Dedaration | El Console | 47 Search | [ma Coverage &3

AlTests (Jan 16, 2008 3:59:44 PM) m | %% &

Element Coverage Covered Lines
== 720% 2981

== 720% 2981

B edu.cmu.cs.sasylf - 0.0% 0

B edu.cmu.cs.sasylf.ast B 33.0% 695

B edu.cmu.cs.sasylf.backend = 578% 170

3 edu.cmu.cs.sasylf.grammar B 73.0% 316

3 edu.cmu.cs. sasylf.parser - 63.2% 1241

3 edu.cmu.cs.sasylf. term B 340 % 374

3 edu.cmu.cs. sasylf. test B 30.1% 185

=

=k

Total Lines
4139

4139

9

790

234

405

1965

445

231

]

=

) 45
17-654 Spring
LL Problems | @ Javadec Eé Dedlaration | =] Console | 4 Search | [m Coverage &2 =8
e Breakdown by package, [amest an is, 20 40515 p0) m KRR E & ES
CIaSS, and method Element Coverage | Coveredlines Totallines 4
B & SASILF = 720% 2981 4139
B src = 720% 2981 4133
-8 edu.cmu.cs.sasylf - 0.0% o a
°
COVerage -8} edu.cmu.cs.sasylf.ast B 5.0% 695 790
= Classes &5 edu.cmu.cs.sasylf-backend - s 7 204
-} edu.cmu,cs.sasylf.grammar L 78.0 % 315 405
.
MEthOdS -8 edu.cmu.cs.sasylf.parser BN 532% 1241 1965
« Statements = edu.cmu.cs.sasyif.term = 340% 74 445
; =R = 733% “ &0
. j
Instructions =@ abstraction = 73% B &0
& make(String, Term, Term) B9 100.0 % 12 12
A . I Abstraction(String, Term, Ten®== 100.0 % 7 7
* Graphical and numerical © sopylte et Tems, mm 15.7% <
presentat|o n @ countlambdas() = 1000 % 1 1
@ equals(Object) 1000 % 4 4
A getFreeVarizbles(Set<Freeva®™@ 100.0 % 2 2
@ getType(List<Pair <String, Te/=l 0.0 % o 4
@ hashCode() - 0.0% [1
A incrFreeDeBruiinint, int) - 75.0 % " 4
@ substitute(Substitution) = 1000 % 4 4
@ tostringQ) = 1000 % 1 1
& unifyCase(Term, Substituton, ™8 80.0 % 4 5
& unifyFlexApp(FreeVar, List<? mm 0.0% o 8
B [J] Appiicationjava = 903% 130 144
®-[1] atom.java B 100.0% 16 16
- [J] Boundvar.java = 50.3% 25 k5]
- [J] constant java B 90.0% g 10
+ m EOCUnificationFailed.java - 0.0 % 1] 1
@[] Facade.java - 91.7% 11 12
#.[J] FreeVar.iava B 9549 27 2z &8
46

17-654 Spring 2007 -Aldrich © 2007

19

Clover in Eclipse

e Coverage report in editor window
= red: not covered

= green: covered multiple times

D lambda-oc./d m Binding.java m ClauseUse.java D Variable.java &2 @;Assert‘dass ¥y = B
package edu.cmu.ca.sasylf.ast; A

®import java.util.*;[]

public class Variable extends Element {
public Variable(String s, Location 1) { super(l): symbol = 3! }

public String getSymbol(} { return symbol; }
public Syntax getIype() { return type; }

=1 public ElemType getElemType() { return type; }
a public int hashCode() { return symbol.hashCode(): }
A & public boolean eguals(Cbject okj) {
if (this == obj) return true:
if (!({obj instanceof Variable)) return false;
Variable v = (Variable) obj;

return symbol.equals(v.symbol);

= public void setType (Syntax t) {
if (type !'= null)
ErrorHandler.report("The same variable may not appear in mult
type = t;

ke
17-654 Spring < td

47

Unit Testing and Coverage Takeaways

e Testing is direct execution of code on test data in a
controlled environment
= Testing can help find bugs, assess quality, clarify specs, learn
about programs, and verify contracts
= Testing cannot verify correctness

e Unit testing has multiple benefits
= Clarifies specification
= Isolates defects
= Finds errors as you write code
= Avoids rework

e Multiple white box coverage critieria

= Useful to tell you where you are missing tests
= Not sufficient to guarantee adequacy

17-654 Spring 2007 -Aldrich © 2007

49

20

