
1

Design Practices

17-654/17-754: Analysis of Software Artifacts

Jonathan Aldrich

8 April 2008

Specification:
The Starting Point for Design

• Functionality
• Usually a set of use cases

• Detailed scenarios of system use
• Includes normal and exceptional cases

• Less often: mathematical specifications

• Quality attributes
• Expected areas of extension
• Robustness, Security
• Performance, Fault-tolerance

• We’ll talk more about specifications and
requirements gathering later

2

8 April 2008

Identifying Classes: Noun Extraction

• Start with short problem description
• Identify the nouns and analyze

• External entities: leave out
• unless system needs to model them
• example: “The User”

• Tangible entities: classes
• Abstract nouns: classes or attributes (fields)

• weight, brightness, size
• Complex abstract nouns might end up as a

class
• e.g. Color, Message, Event

• Add
• Boundary classes: interaction with world

• Typically one per screen/dialog
• Control classes: encapsulate non-trivial

computations
• Data structures that support the entities
• Classes for abstract implementation concepts

• Controller, Router, Manager, …

8 April 2008

What should be a Class?

• Retained information
• Need to remember data about the object

• Needed services
• Operations that change attribute values or

compute information

• Multiple attributes
• Class groups data related by a concept
• No class usually needed for a scalar

• Common attributes & operations
• A set of attributes/operations is common to

many objects

• Essential requirements
• Entities in the problem space

Source: [Coad and Yourdon 91]

3

8 April 2008

Example: Noun Extraction

To-Do List Application

• The to-do list application is designed to keep track of tasks for the
user. Tasks can be sorted by due date and priority. New tasks can
be added, and existing tasks can be canceled or completed. The
initial application is web-based, but we would like to support
disconnected operation on a laptop or PDA in the future.

To-Do Application Use Cases

• Sign up for an account, with username and password

• Log in to system with username and password

• Add a to-do item with name, priority, and due date

• Show to-do items by date

• Show to-do items by date

• Cancel a task

• Complete a task

8 April 2008

Abstract Design: CRC Cards

• Class-Responsibility-Collaboration
• Name of class
• Responsibilities/functionality of the class
• Other classes it invokes to achieve that functionality

• Responsibility guidelines
• Spread out functionality

• No “god” classes – make maintenance difficult

• State responsibilities generally
• More reusable, more abstract

• Group behavior with related information
• Enhances cohesion, reduces coupling
• Promotes information hiding of data structures

• Information about one thing goes in one place
• Spreading it out makes it hard to track

4

8 April 2008

CRC Validation

• Validation
• Ensure all functionality in specification is

covered by some class
• Reason through how functionality could

be achieved
• Abstractly executing the program
• What other classes are needed?
• Are their responsibilities enough for this

class to do what it needs to do?

• Refine as needed

8 April 2008

Attributes, Associations, and
Operations

• Go through use cases
• Attribute: something that belongs to a

class
• Needed for computation in the use case

• Association: one class stores another
• Usually implemented by a field or

collection—but keep abstract early in
design

• Operation: verbs in use cases
• OO: usually goes in the object on which

the verb operates
• Categories

• accessors: access data
• mutators: manipulate data
• computational methods

5

8 April 2008

Quality Attributes

• So far, we’ve focused on capturing
functionality in a design

• But good design is primarily about quality
attributes, e.g.
• Extensibility – ability to easily add and change

capabilities
• Robustness – operate under stress or invalid

input
• Usability – ability for users to easily accomplish

tasks
• Security – withstand attacks
• Fault-tolerance – recover from component

failure
• Performance – yields results at a high rate or

with low latency

8 April 2008

Refining a Design

• Step through Use Cases
• Verify completeness of diagram by asking:

• Which methods execute?
• What methods are called?
• What does each method or object have to know?

• Consider quality attributes
• Make concrete with a test

• e.g. modification scenario, performance target
• Generate multiple designs – NOT JUST ONE!

• What design patterns achieve this attribute?
• May be helpful to have different people develop

designs independently
• Evaluate designs

• How well does this design achieve the entire set of
quality attributes?

• May require prioritizing attributes

6

Design Patterns

17-654/17-754: Analysis of Software Artifacts

Jonathan Aldrich

8 April 2008

Design Patterns

• "Each pattern describes a problem
which occurs over and over again in
our environment, and then describes
the core of the solution to that
problem, in such a way that you can
use this solution a million times over,
without ever doing it the same way
twice”
– Christopher Alexander

7

8 April 2008

History

• Christopher Alexander, The Timeless
Way of Building (and other books
• Proposes patterns as a way of capturing

design knowledge in architecture
• Each pattern represents a tried-and-true

solution to a design problem
• Typically an engineering compromise

that resolves conflicting forces in an
advantageous way

8 April 2008

Patterns in Physical Architecture

• When a room has a window with a view, the window
becomes a focal point: people are attracted to the
window and want to look through it. The furniture in
the room creates a second focal point: everyone is
attracted toward whatever point the furniture aims
them at (usually the center of the room or a TV). This
makes people feel uncomfortable. They want to look
out the window, and toward the other focus at the
same time. If you rearrange the furniture, so that its
focal point becomes the window, then everyone will
suddenly notice that the room is much more
“comfortable”.
– Leonard Budney, Amazon.com review of The
Timeless Way of Building

8

8 April 2008

Benefits of Patterns

• Shared language of design
• Increases communication bandwidth
• Decreases misunderstandings

• Learn from experience
• Becoming a good designer is hard

• Understanding good designs is a first
step

• Tested solutions to common problems
• Where is the solution applicable?
• What are the tradeoffs?

8 April 2008

Elements of a Pattern

• Name
• Important because it becomes part of a design

vocabulary
• Raises level of communication

• Problem
• When the pattern is applicable

• Solution
• Design elements and their relationships
• Abstract: must be specialized

• Consequences
• Tradeoffs of applying the pattern

• Each pattern has costs as well as benefits
• Issues include flexibility, extensibility, etc.
• There may be variations in the pattern with different

consequences

9

8 April 2008

History: Design Patterns Book

• Brought Design
Patterns into the
mainstream

• Authors known as the
Gang of Four (GoF)

• Focuses on
descriptions of
communicating objects
and classes that are
customized to solve a
general design
problem in a particular
context

• Great as a reference
text

• Uses C++, Smalltalk

8 April 2008

A More Recent Patterns Text

• Uses Java
• The GoF text was

written before
Java went
mainstream

• Good pedagogically
• Lots of examples

and explanation
• GoF is really more

a reference text

10

8 April 2008

Patterns to Know

• Strategy, Observer, Decorator,
Factory, Singleton, Command,
Adapter, Facade, Template Method,
Iterator, Composite, State, Proxy,
and Model-View-Controller

• Know pattern name, problem,
solution, and consequences

