
1

Course Introduction

17-654/17-765

Analysis of Software Artifacts

Jonathan Aldrich

Course Intro - Analysis of Software
Artifacts - Spring 2008

2

Software Disasters: Therac-25

• Delivered radiation treatment
• 2 modes

• Electron: low power electrons
• X-Ray: high power electrons

converted to x-rays with
shield

• Race condition
• Operator specifies x-ray,

then quickly corrects to
electron mode

• Dosage process doesn’t see
the update, delivers x-ray
dose

• Mode process sees update,
removes shield

• Consequences
• 3 deaths, 3 serious injuries

from radiation overdose

from http://www.netcomp.monash.edu.au/cpe9001/assets/readings/HumanErrorTalk6.gif

source: Leveson and Turner, An Investigation of the Therac-25 Accidents, IEEE Computer, Vol. 26, No. 7, July 1993.

2

Course Intro - Analysis of Software
Artifacts - Spring 2008

4

Software Disasters: Ariane 5

• $7 billion, 10 year rocket
development

• Exploded on first launch
• A numeric overflow occurred in

an alignment system
• Converting lateral velocity from

a 64 to a 16-bit format
• Guidance system shut down

and reported diagnostic data
• Diagnostic data was interpreted

as real, led to explosion

• Irony: alignment system was
unnecessary after launch and
should have been shut off

• Double irony: overflow was in
code reused from Ariane 4
• Overflow impossible in Ariane 4
• Decision to reuse Ariane 4

software, as developing new
software was deemed too risky!

from http://www-user.tu-chemnitz.de/~uro/teaching/crashed-numeric/ariane5/

source: Ariane 501 Inquiry Board report

Course Intro - Analysis of Software
Artifacts - Spring 2008

5

Software Disasters

3

Course Intro - Analysis of Software
Artifacts - Spring 2008

6

Software Quality Challenges

• Expense
• Testing and evaluation may consume more time and cost in

the software engineering process than design and code
development

• Precision
• Almost impossible to completely succeed in testing and QA

• “Very high quality” is rarely achieved, even for critical systems
• Major gaps in testing and inspection

• Consequences
• NIST report: $60B lost
• Developers: Holding back features and new capabilities

[adapted from
Scherlis]

Course Intro - Analysis of Software
Artifacts - Spring 2008

8

Hardware Disasters: What’s Different?

• Can be equally serious

• But don’t seem to be equally common

4

Course Intro - Analysis of Software
Artifacts - Spring 2008

9

Why is Building Quality Software Hard?

• For other disciplines we do pretty well
• Well-understood quality assurance techniques
• Failures happen, but they are arguably rare
• Engineers can measure and predict quality

• For software, we aren’t doing well
• How many cars get recalled for a patch once a

month?
• Failure is a daily or weekly occurrence
• We have relatively poor techniques for measuring,

predicting, and assuring quality

Course Intro - Analysis of Software
Artifacts - Spring 2008

10

Software vs. other Engineering Disciplines

• Every software project is different
• Classifications of engineering design

• Routine design: specialize a well-known design to a
specific context
• Most common in engineering projects

Anyone recognize these cars?

5

Course Intro - Analysis of Software
Artifacts - Spring 2008

11

Software vs. other Engineering Disciplines

• Every software project is different
• Classifications of engineering design

• Routine design: specialize a well-known design to a
specific context
• Most common in engineering projects

• Innovative design: extend a well-known design to new
parameter values
• Sometimes risky – see Tacoma Narrows Bridge!

Course Intro - Analysis of Software
Artifacts - Spring 2008

12

Software vs. other Engineering Disciplines

• Every software project is different
• Classifications of engineering design

• Routine design: specialize a well-known design to a
specific context
• Most common in engineering projects

• Innovative design: extend a well-known design to new
parameter values

• Creative design: introduce new parameter values into the
design space
• Involves generating new prototypes

• Variants of old prototypes, or completely new
• Relatively unusual, and highly risky

6

Course Intro - Analysis of Software
Artifacts - Spring 2008

13

Software vs. other Engineering Disciplines

• Every software project is different
• Classifications of engineering design

• Routine design: specialize a well-known design to a
specific context
• Most common in engineering projects

• Innovative design: extend a well-known design to new
parameter values

• Creative design: introduce new parameter values into the
design space
• Involves generating new prototypes

• Variants of old prototypes, or completely new
• Relatively unusual, and highly risky

• Software
• Nearly all design is innovative or creative
• As soon as design is routine, we put it in a library,

language or tool!
• “software manufacturing” will never happen

Course Intro - Analysis of Software
Artifacts - Spring 2008

14

Software’s Unmatched Complexity

• 50 Mloc = 1 million pages
• What other man-made artifacts have designs this large?
• We do because software is so flexible and powerful
• We are limited only by complexity

• As soon as we manage one level of complexity, the market will
push us to add more!

• Worse: every page matters
• Q: Could Windows crash because a third-party device driver

has a bug?
• A: Yes. In fact, that’s the biggest cause of Windows crashes.

• Why?

7

Course Intro - Analysis of Software
Artifacts - Spring 2008

15

Engineering Mathematics

• Continuous mathematics: calculus, etc.
• Foundation of electrical, mechanical, civil, even chemical

engineering

• Some quality strategies
• Divide and conquer

• Break a big problem into parts
• Physical location: floor, room…
• Conceptual system: frame, shell, wiring, plumbing…

• Solve those parts separately
• Overengineer

• Build two so if one fails the other will work
• Build twice as strong to allow for failure

• Statistical analysis of quality
• Relies on continuous domain

• These work because the different parts of the system are
independent
• Never completely true, but true enough in practice

Course Intro - Analysis of Software
Artifacts - Spring 2008

16

Software uses Discrete Mathematics

• Old quality strategies fail!
• Divide and conquer

• Butterfly effect: small bugs mushroom into big problems
• Overengineering

• Build two, and both will fail simultaneously
• Statistical quality analysis

• Most software has few meaningful statistical properties

• Discrete math defeats conventional modularity
• Must leverage discrete math to analyze software

• Choose concrete cases based on conceptual categories
• Functional test coverage
• Inspection checklists
• Dynamic analysis

• Construct proofs based on considering all abstract cases
• Static analysis
• Formal modeling
• Program verification

• Very different from analysis in other engineering disciplines

8

Course Intro - Analysis of Software
Artifacts - Spring 2008

17

Questions for Analysis

• How can we ensure a system does not behave badly?

• How can we ensure a system meets its specification?

• How can we ensure a system meets the needs of its
users?

Course Intro - Analysis of Software
Artifacts - Spring 2008

18

Software Analysis, Defined

• The systematic examination of a software artifact to
determine its properties
• Systematic

• Attempting to be comprehensive
• Test coverage, inspection checklists, exhaustive model checking

• Examination
• Automated

• Regression testing, static analysis, dynamic analysis
• Manual

• Manual testing, inspection, modeling

• Artifact
• Code, execution trace, test case, design or requirements

document
• Properties

• Functional: code correctness
• Quality attributes: evolvability, security, reliability, performance,

…

9

Course Intro - Analysis of Software
Artifacts - Spring 2008

19

Verification and Validation

Two kinds of Analysis questions
• Verification

• Does the system meet its specification?
• i.e. did we build the system right?

• Flaws in design or code
• Incorrect design or implementation decisions

• Validation
• Does the system meet the needs of users?

• i.e. did we build the right system?
• Flaws in specification

• Incorrect requirements capture

• We will focus mostly on verification
• Testing, inspection discussion will touch on validation
• Other validation approaches beyond scope of course

• prototyping, interviews, scenarios, user studies
• A principal focus of the Methods course

[adapted from
Scherlis]

Course Intro - Analysis of Software
Artifacts - Spring 2008

20

Analysis in a Process Context

Quality Goal
Definition Artifact

Development

Artifact Analysis

Quality
Measurement

Process Refinement

10

Course Intro - Analysis of Software
Artifacts - Spring 2008

21

Discussion: Quality Goals

• How might one define quality goals?

• # defects / kloc

• response time < 3 sec

• max down time

• mean time to failure

• free from buffer overflow

• # concurrent users

• safety (100%), security (0 security breaches)

• Generally depends on domain

Course Intro - Analysis of Software
Artifacts - Spring 2008

22

Analysis in a Process Context

Quality Goal
Definition Artifact

Development

Artifact Analysis

Quality
Measurement

Process Refinement

11

Course Intro - Analysis of Software
Artifacts - Spring 2008

23

Prevention – Worth a Pound of Cure

• Requirements
• Quality stakeholders
• Non-functional

attributes

• Process
• Measurement and

feedback
• Testers and their role

• E.g., S&S, agile
• CMM, TSP, etc.

• Risk mgmt

• Architecture
• Robustness and self-

healing

• Design
• Robustness patterns
• Safe APIs
• Analysis

• Coding
• Safe languages
• Safe coding practices
• Encapsulation /

sandboxing

• Specific practices
• Use of tools
• Defect tracking
• Root cause analysis

Evaluative techniques like testing are important—

but quality cannot be tested in! [adapted from Scherlis]

Course Intro - Analysis of Software
Artifacts - Spring 2008

24

Analysis in a Process Context

Quality Goal
Definition Artifact

Development

Artifact Analysis

Quality
Measurement

Process Refinement

12

Course Intro - Analysis of Software
Artifacts - Spring 2008

25

Discussion: Kinds of Analysis

Analysis Type

Testing

Inspect to coding stand

pair programming

static analysis – e.g. beam

traceability matrix

model checking

customer satisfaction

walkthrough

inspection of other artifacts

What it’s good for

Does it do what I want?

Identify bugs – esp. logical

written to standards

avoid stupid mistakes

locking / resource management

design/ requirement conform.

design errors

validation

UI requirement validation

errors on requirements

Course Intro - Analysis of Software
Artifacts - Spring 2008

26

Principal Evaluative Techniques

• Testing
• Direct execution of code on test data in a controlled environment

• Functional and performance attributes
• Component-level
• System-level

• Identify and locate faults – no assurance of complete coverage

• Inspection
• Human evaluation of code, design documents (specs and models)

• Structural attributes
• Design and architecture
• Coding practices
• Algorithms and design elements

• Creation and codification of understanding

• Dynamic analysis
• Tools extracting data from test runs

• Finding faults: memory errors
• Gathering data: performance, invariants

• Information is precise but does not cover all possible executions

[adapted from Scherlis]

13

Course Intro - Analysis of Software
Artifacts - Spring 2008

27

Emerging Evaluative Techniques
• Modeling

• Building and analyzing formal models of a system
• Find design flaws
• Predict system properties

• Often tool-supported

• Static analysis
• Tool-supported direct static evaluation of formal software artifacts

• Mechanical errors
• Null references
• Unexpected exceptions
• Memory usage

• Can yield partial positive assurance

• Formal verification
• Formal proof that a program meets its specification

• Typical focus on functional attributes
• Often tool-supported
• Typically expensive

[adapted from Scherlis]

Course Intro - Analysis of Software
Artifacts - Spring 2008

28

Quality Assurance is More Than Testing

Some quality attributes are difficult to test:
• Attributes that cannot easily be measured externally

• Is a design evolvable? Design Structure Matrices
• Is a design secure? Secure Development Lifecycle
• Is a design technically sound? Alloy; Model Checking
• Does the code conform to a design? Reflexion models
• Where are the performance bottlenecks? Performance analysis
• Does the design meet the user’s needs? Usability analysis

• Attributes for which tests are nondeterministic
• Real time constraints Rate monotonic scheduling
• Race conditions Analysis of locking

• Attributes relating to the absence of a property
• Absence of security exploits Microsoft’s PREfast
• Absence of memory leaks Cyclone, Purify
• Absence of functional errors Hoare Logic
• Absence of non-termination Termination analysis

14

Course Intro - Analysis of Software
Artifacts - Spring 2008

29

Defect Types and Analysis

• Functional errors: incorrect output
• Testing, Inspection, Formal Verification

• Integration errors: misuse of APIs
• Inspection – identify conflicts at design time

• Integration testing – find errors at earliest opportunity

• Types, analysis, and model checking – verify interface compatibility

• Mechanical defects: memory and concurrency errors
• Static analysis – assure absence of mechanical defects

• Dynamic analysis – identify at run time

• Robustness, security, evolvability errors
• Security, robustness testing

• Inspection of code and design

• Static analysis – find security flaws, assure conformance to design

• Performance errors
• Load testing, profiling – measure performance on realistic load

• Usability errors
• Prototyping, user studies

(List is incomplete)

Course Intro - Analysis of Software
Artifacts - Spring 2008

30

Discussion: Criteria for Evaluating Techniques

• Cost – developer time taken
• learning curve
• money to buy a tool

• Benefit

• accuracy – does it pin down the line of code
• ratio of true defects to false positives

• fitness for purpose, for artifact

• applicability to lifecycle

• % defects that reach the client

• coverage - functionality
[adapted from Scherlis]

15

Course Intro - Analysis of Software
Artifacts - Spring 2008

31

Criteria for Evaluating Techniques

• Cost
• Money, time to market
• Sunk and recurring

• Timeliness
• Design time
• During coding
• During testing
• After deployment

• Accuracy
• False positives
• False negatives

• Development value
• Is the information actionable?

• e.g. enough information to fix a
bug?

• Risks of adoption

• Metrics: observability of
outcomes

• Scope: What kinds of defects?
• System scale and complexity
• Error vs. fault focus
• Non-functional attributes:

performance, usability,
security, safety, etc.

• Functionality

• Integration and value during
development
• Defect prevention support
• Architecture design
• Code management
• Modeling and design intent

capture

[adapted from Scherlis]

Course Intro - Analysis of Software
Artifacts - Spring 2008

33

Your Questions

• Q: In a slide, you said testing can locate a fault. Is
that true?

• A: Sometimes!
• Unit tests test a small unit of code (usually a procedure)

• Errors found must be in that code
• Tests that result in a crash show the error location

• Which may or may not be the location of the fault (root cause)
• System tests that just give the wrong answer aren’t very

informative
• The fault in the code could be anywhere in the execution
• But it’s a concrete execution trace, so a debugger may help you

isolate the problem

• What about basic course information?

• A: Sorry, didn’t get to it, but I will today!

16

Course Intro - Analysis of Software
Artifacts - Spring 2008

34

Analysis in a Process Context

Quality Goal
Definition Artifact

Development

Artifact Analysis

Quality
Measurement

Process Refinement

Course Intro - Analysis of Software
Artifacts - Spring 2008

35

Faults, Errors, Failures, Hazards

• Fault
• Type 1 – a flaw in an attached physical component

• Traditional notion of a fault in hardware reliability theory (physical parts
wearing out)

• Type 2 – a static flaw in software code
• Syntactically local in code or structurally pervasive
• Software faults cause errors only when triggered by use.

• Error – incorrect state at execution time caused by a fault
• E.g., buffer overflow, race condition, deadlock, corrupted data

• Failure – effect of an error on system capability
• E.g., program crashes, attacker gains control, program becomes

unresponsive, incorrect output

• Severity – cost of failure to stakeholders
• E.g., Loss of life, privacy compromise

• Hazard – product of failure probability and severity
• Equivalent to risk exposure

[adapted from Scherlis]

17

Course Intro - Analysis of Software
Artifacts - Spring 2008

36

Robustness / Fault Tolerance

• How does the system behave in the presence of errors in the
system or environment?
• Hardware: memory parity errors, sensor failures, actuator anomalies
• Software: buffer overflows, null dereferences, protocol violations
• Environment: network faults, inputs out of range

• Robustness: diminishing the likelihood or severity of failure in
response to the fault
• Buffer overrun in C == ? in Java

• Strategies for robustness
• Type systems
• Run-time system checks
• Rebooting components
• Autonomic architectures
• Self-healing data structures
• Data validation
• State estimators

Course Intro - Analysis of Software
Artifacts - Spring 2008

37

Analysis in a Process Context

Quality Goal
Definition Artifact

Development

Artifact Analysis

Quality
Measurement

Process Refinement

18

Course Intro - Analysis of Software
Artifacts - Spring 2008

39

Too Many Defects: What to do?

• Real question: Why?

Quality Goal
Definition Artifact

Development

Artifact Analysis

Quality
Measurement

Process Refinement

Course Intro - Analysis of Software
Artifacts - Spring 2008

40

Measuring Quality

• Defects / kloc not enough
• Break down by category, severity
• Break down by phase introduced
• Break down by phase detected

• Other metrics useful as well
• case study: Microsoft [source: Manuvir Das]

• code velocity / developer productivity
• tool effectiveness (e.g. fix rate on warnings)

• Crucial information for quality analysis!

19

Course Intro - Analysis of Software
Artifacts - Spring 2008

41

Discussion: Quality Problem Scenarios

• Many defects not found until system test

• Many defects introduced in design are found when coding

• Several similar security vulnerabilities are identified

Course Intro - Analysis of Software
Artifacts - Spring 2008

42

Root Cause Analysis at Microsoft

• Gather data on failures
• Every MSRC bulletin
• Beta release feedback
• Watson crash reports
• Self host
• Bug databases

• Understand important failures in a deep way
• Understand why the defect was introduced

• Not just the incorrect code
• Understand why it was not caught earlier

• Process failure
• Identify patterns in defect data

• Design and adjust the engineering process to ensure
that these failures are prevented
• Developer education
• Review checklists
• New static analyses source: Manuvir Das

20

Course Intro - Analysis of Software
Artifacts - Spring 2008

43

Case study: QA at Microsoft

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations
• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Longhorn/Vista release of Windows

• Early 2000s: add static analysis
• Wide variety of tools

• Test coverage, dependency violation, insufficient/bad design
intent, integer overflow, allocation arithmetic, buffer overruns,
memory errors, security issues

• Enforced automatically at code check-in

Course Intro - Analysis of Software
Artifacts - Spring 2008

44

Course Goals

• Understanding
• Where different analyses are appropriate
• Tradeoffs between analysis techniques
• Theory sufficient to evaluate new analyses
• Measurement and management of analysis

• Experience
• Writing simple analyses
• Applying analysis to software artifacts

21

Course Intro - Analysis of Software
Artifacts - Spring 2008

45

Course Outline
• Introduction (today)
• Traditional analysis techniques

• Testing: techniques, processes, tools
• Inspection

• Program semantics and verification
• Semantics and representations of code
• Formal specification
• Proving programs correct

• Static analysis
• Program representations and bug finders
• Dataflow analysis
• Static analysis tools

• Analysis across the software lifecycle
• Analyzing designs
• Principles of security analysis; STRIDE
• Performance analysis: profiling
• Analyzing real-time and concurrent systems
• Dynamic analysis, languages, and type systems

• Putting it all together
• Quality in the organization
• Case studies: Microsoft and eBay

Course Intro - Analysis of Software
Artifacts - Spring 2008

46

Homeworks and Projects
• Find seeded defects using testing and inspection

techniques

• Prove small programs correct with Hoare logic

• Check program correctness with the ESC/Java tool

• Design a dataflow analysis, and implement in in an
analysis framework

• Analyze a design for evolvability, consistency

• Probe a software system for security violations

• Measure and tune system performance

• Assure synchronization in a concurrent system

• Run a commercial or research analysis tool on source
code and report on the experience

• Develop a quality assurance plan for your studio

22

Course Intro - Analysis of Software
Artifacts - Spring 2008

47

Evaluation

• 1-week assignments (~45%)
• Basic understanding of analysis techniques
• Write and apply custom analyses
• Engineering tradeoffs
• Most alone, some done in pairs

• 2-week group projects (~20%)
• Evaluate analysis tools on studio or other project

• Written reports and in-class presentations
• Develop a quality assurance plan

• For your Studio, Practicum, or other project

• Midterm and Final exam (~15% each)
• Theory and engineering

• Class participation (~5%)
• Discussion, presentations, participation sheets

• Schedule is on the web
• Assignments due on Tuesdays

Course Intro - Analysis of Software
Artifacts - Spring 2008

48

Ph.D. Projects

• Possible topics
• Literature survey

• Study techniques, put into framework, identify open problems
• Comparative evaluation

• Your experience with multiple techniques or tools
• Development of a new analysis technique
• Application of an analysis technique to a new problem

domain

• Requirements
• Written report

• Length depends on nature of project
• Research emphasis
• Class presentation

• Details to be arranged with instructor

23

Course Intro - Analysis of Software
Artifacts - Spring 2008

49

Policies

• Time Management
• Keep track of time spent on each assignment

• Late Work
• 5 free late days; use whenever you like
• No other late work except under extraordinary circumstances

• Collaboration Policy
• You may discuss the lectures and assignments with others,

and help each other with technical problems
• Your work must be your own. You may not look at other

solutions before doing your own. If you discuss an
assignment with others, throw away your notes and work
from the beginning yourself.

• You must cite sources if you use or paraphrase any material
• If you have any questions, ask the instructor or TAs

Course Intro - Analysis of Software
Artifacts - Spring 2008

50

• Instructor
• Jonathan Aldrich

aldrich+ at cs.cmu.edu

• TAs
• Ciera Christopher

cchristo [at] cs.cmu.edu

• Megha Jain
meghajai [at] andrew.cmu.edu

Course Instructor and TAs

24

Course Intro - Analysis of Software
Artifacts - Spring 2008

51

Session Summary

• Achieving software quality is difficult
• Design innovation, software complexity and

discreteness

• Analysis defined
• The systematic examination of a software artifact

to determine its properties

• Diversity of analysis techniques
• Testing, inspection, static and dynamic analysis,

model checking, formal verification
• Must know when and how to use and measure

