
Lecture Notes:

Semantics of WHILE

17-654/17-754: Analysis of Software Artifacts
Jonathan Aldrich (jonathan.aldrich@cs.cmu.edu)

Lectures 7-8

In order to analyze programs rigorously, we need a clear definition of
what a program means. There are many ways of giving such definitions;
the most common technique for industrial languages is an English docu-
ment, such as the Java Language Specification. However, natural language
specifications, while accessible to all programmers, are often imprecise.
This imprecision can lead to many problems, such as incorrect or incom-
patible compiler implementions, but more importantly for our purposes,
analyses that give incorrect results.

A better alternative, from the point of view of reasoning precisely about
programs, is a formal definition of program semantics. In this class we will
deal with operational semantics, so named because they show how programs
operate.

1 The WHILE Language

In this course, we will study the theory of analyses using a simple program-
ming language called WHILE. The WHILE language is at least as old as
Hoare’s 1969 paper on a logic for proving program properties (see Lecture
9). It is a simple imperative language, with assignment to local variables, if
statements, while loops, and simple integer and boolean expressions.

We will use the following metavariables to describe several different
categories of syntax. The letter on the left will be used as a variable rep-
resenting a piece of a program; the word in bold represents the set of all
program pieces of that kind; and on the right, we describe the kind of pro-
gram piece we are describing:

1

S ∈ Stmt statements
a ∈ AExp arithmetic expressions
x, y ∈ Var program variables
n ∈ Num number literals
P ∈ PExp boolean predicates

The syntax of WHILE is shown below. Statements S can be an assign-
ment x := a, a skip statement which does nothing (similar to a lone semi-
colon or open/close bracket in C or Java), and if and while statements
whose condition is a boolean predicate P . Arithmetic expressions a include
variables x, numbers n, and one of several arithmetic operators, abstractly
represented by opa. Boolean expressions include true, false, the negation of
another boolean expression, boolean operators opb applied to other boolean
expressions, and relational operators opr applied to arithmetic expressions.

S ::= x := a
| skip
| S1; S2

| if P then S1 else S2

| while P do S

a ::= x
| n
| a1 opa a2

opa ::= + | − | ∗ | / | . . .

P ::= true
| false
| not P
| P1 opb P2

| a1 opr a2

opb ::= and | or | ∗ | / | . . .

opr ::= < | ≤ | = | > | ≥ | . . .

2 Big-Step Expression Semantics

We will first describe the semantics of arithmetic and boolean expressions
using big-step semantics. Big-step semantics use judgments to describe
how an expression reduces to a value. In general, our judgments may

2

depend on certain assumptions, such as the values of variables. We will
write our assumptions about variable values down in an environment E,
which maps each variable to a value. For example, the environment E =
{x7→3, y 7→5} states that the value of x is 3 and the value of y is 5. Variables
not in the mapping have undefined values.

We will use the judgment form E ⊢ a ⇓ v, read, “In the environment
E, expression a reduces to value v.” Values in WHILE are integers n and
booleans (true and false).

We define valid judgments about expression semantics using a set of
inference rules. As shown below, an inference rule is made up of a set of
judgments above the line, known as premises, and a judgment below the
line, known as the conclusion. The meaning of an inference rule is that the
conclusion holds if all of the premises hold.

premise1 premise2 . . . premisen

conclusion

An inference rule with no premises is called an axiom. Axioms are al-
ways true. An example of an axiom is that integers always evaluate to
themselves:

E ⊢ n ⇓ n
eval-num

In the rule above, we have written the n on the right hand side of the
judgment in bold to denote that the program text n has reduced to a math-
ematical integer n. This distinction is somewhat pedantic and sometimes
we will omit the boldface, but it is useful to remember that program seman-
tics are given in terms of mathematics, whereas mathematical numbers and
operations also appear as program text.

On the other hand, if we wish to define the meaning of an arithemetic
operator like + in the source text, we need to rely on premises that show
how the operands to + reduce to values. Thus we use an induction rule
with premises:

E ⊢ a ⇓ v E ⊢ a′ ⇓ v′

E ⊢ a + a′ ⇓ v+v′
eval-plus

This rule states that if we want to evaluate an expression a+a′, we need
to first evaluate a to some value v, then evaluate a′ to some value v′. Then,
we can use the mathematical operator + on the resulting values to find the
final result v′′. Note that we are using the mathematic operator + (in bold)
to define the program operator +. Of course the definition of + could in

3

principle be different from +–for example, the operator + in C, defined on
the unsigned int type, could be defined as follows:

E ⊢C a ⇓ v E ⊢C a′ ⇓ v′ v′′ = (v+v′) mod 232

E ⊢C a + a′ ⇓ v′′
eval-plus32

This definition takes into consideration that int values are represented
with 32 bits, so addition wraps around after it reaches 232 − 1–while of
course the mathematical + operator does not wrap around. Here we have
used the C subscript on the turnstile ⊢C to remind ourselves that this is a
definition for the C language, not the WHILE language.

Once we have defined a rule that has premises, we must think about
how it can be used. The premises themselves have to be proven with other
inference rules in order to ensure that the conclusion is correct. A complete
proof of a judgment using multiple inference rules is called a derivation. A
derivation can be represented as a tree with the conclusion at the root and
axioms at the leaves. For example, an axiom is also a derivation, so it is
easy to prove that 5 reduces to 5:

E ⊢ 5 ⇓ 5

Here we have just applied the axiom for natural numbers, substituting
the actual number 5 for the variable n in the axiom. To prove that 1 + 2
evaluates to 3, we must use the axiom for numbers twice to prove the two
premises of the rule for +:

E ⊢ 1 ⇓ 1 E ⊢ 2 ⇓ 2

E ⊢ 1 + 2 ⇓ 3

We can write the addition rule above in a more general way to define
the semantics of all of the operators in WHILE in terms of the equivalent
mathematical operators. Here we have also simplified things slightly by
evaluating the mathematical operator in the conclusion.

E ⊢ a ⇓ v E ⊢ a′ ⇓ v′

E ⊢ a op a′ ⇓ v op v′
eval-op

As stated above, the evaluation of a WHILE expression may depend
on the value of variables in the environment E. We use E in the rule for
evaluating variables. The notation E{x} means looking up the value that x
maps to in the environment E:

4

E{x} = v

E ⊢ x ⇓ v
eval-var

We complete our definition of WHILE expression semantics with axioms
for true, false, and an evaluation rule for not. As before, items in regular
font denote program text, whereas items in bold represent mathematical
objects and operators:

E ⊢ true ⇓ true
eval-true

E ⊢ false ⇓ false
eval-false

E ⊢ P ⇓ v

E ⊢ not P ⇓ not v
eval-not

As a side note, instead of defining not in terms of the mathematical
operator not, we could have defined the semantics more directly with a
pair of inference rules:

E ⊢ P ⇓ true

E ⊢ not P ⇓ false
eval-nottrue

E ⊢ P ⇓ false

E ⊢ not P ⇓ true
eval-notfalse

3 Example Derivation

Consider the following expression, evaluated in the variable environment
E = {x7→5, y 7→2}: (false and true) or (x < ((3∗y)+1)). I use parentheses to
describe how the expression should parse; the precedence of the operators
is standard, but as this is not a class on parsing I will generally leave out
the parentheses and assume the right thing will be done. We can produce
a derivation that reduces this to a value as follows:

E ⊢ false ⇓ false E ⊢ true ⇓ true

E ⊢ false and true ⇓ false

E{x} = 5

E ⊢ x ⇓ 5

E ⊢ 3 ⇓ 3

E{y} = 2

E ⊢ y ⇓ 2

E ⊢ 3 ∗ y ⇓ 6 E ⊢ 1 ⇓ 1

E ⊢ 3 ∗ y + 1 ⇓ 7

E ⊢ x < 3 ∗ y + 1 ⇓ true

E ⊢ (false and true) or (x < 3 ∗ y + 1) ⇓ true

5

4 Big-Step Statement Semantics

We will use the judgment form E ⊢ S ⇓ E′, read, “In the environment
E, statement S executes to produce a new environment E′.” For example,
consider the rule for evaluating an assignment statement:

E ⊢ a ⇓ v

E ⊢ x:=a ⇓ E{x7→v}
reduce-assign

This rule uses as its premise a big-step judgment evaluating the right-
hand-side expression a to a value v. It then produces a new environment
which is the same as the old environment E except that the mapping for x
is updated to refer to v. The notation E{x7→v} means exactly this.

Of course, realistic programs are made up of more than one statement.
For a sequence of two statements, we simply reduce the first and then later
the second, and thread the environment through this execution order.

E ⊢ S1 ⇓ E′ E′ ⊢ S2 ⇓ E′′

E ⊢ S1; S2 ⇓ E′′
reduce-sequence

E ⊢ skip ⇓ E
reduce-skip

For if statements, we evaluate the boolean condition using big-step se-
mantics. If the result is true, we evaluate the then clause of the if statement.
Of course, we need another rule stating that if the result of the condition is
false, we evaluate the statement in the else clause.

E ⊢ P ⇓ true E ⊢ S1 ⇓ E′

E ⊢ if P then S1 else S2 ⇓ E′
reduce-iftrue

E ⊢ P ⇓ false E ⊢ S2 ⇓ E′

E ⊢ if P then S1 else S2 ⇓ E′
reduce-iffalse

While loops work much like if statements. If the loop condition eval-
uates to true, we replace the while loop with the loop body. However,
because the loop must evaluate again if the condition is still true after exe-
cution of the body, we copy the entire while loop after the loop body state-
ment. Thus, the rewriting rules produce a copy of the loop body for each
iteration of the loop until the loop guard evaluates to false, at which point
the loop is replaced with skip.

6

E ⊢ P ⇓ true E ⊢ S; while P do S ⇓ E′

E ⊢ while P do S ⇓ E′
reduce-whiletrue

E ⊢ P ⇓ false

E ⊢ while P do S ⇓ E
reduce-whilefalse

5 Inductive Proof for Factorial

We would like to prove that:

∀n ≥ 1.{y 7→ 1, x 7→ n} ⊢ while x > 1 do y := y∗x; x := x−1 ⇓ {y 7→ n!, x 7→ 1}

As discussed in class, we need to prove this by induction, but this
will only work if we strengthen the induction hypothesis. So we have the
lemma:

∀n ≥ 1, m.{y 7→ m, x 7→ n} ⊢ while x > 1 do y := y∗x; x := x−1 ⇓ {y 7→ m∗n!, x 7→ 1}

We prove the lemma by induction on n:

Base case: n = 1

(1) {y 7→ m, x 7→ 1} ⊢ x > 1 ⇓ false by expression evaluation

(2) {y 7→ m, x 7→ 1} ⊢ while x > 1 do

y := y ∗ x; x := x − 1 ⇓ {y 7→ m, x 7→ 1} by rule reduce-whilefalse on (1)

7

Inductive case: n = n′ + 1 for some n′ ≥ 1:

(1) {y 7→ m, x 7→ n′+1} ⊢ x > 1 ⇓ true by expression evaluation

(2) {y 7→ m, x 7→ n′+1} ⊢ y ∗ x ⇓ m ∗ n by expression evaluation

(3) {y 7→ m, x 7→ n′+1} ⊢ y := y ∗ x
⇓ {y 7→ m ∗ n, x 7→ n′+1} by rule reduce-assign on (2)

(4) {y 7→ m ∗ n, x 7→ n′+1} ⊢ x − 1 ⇓ n′ by expression evaluation

(5) {y 7→ m ∗ n, x 7→ n′+1} ⊢ x := x − 1
⇓ {y 7→ m ∗ n, x 7→ n′} by rule reduce-assign on (4)

(6) {y 7→ m, x 7→ n′+1} ⊢ y := y ∗ x; x := x − 1
⇓ {y 7→ m ∗ n, x 7→ n′} by rule reduce-sequence on (3), (5)

(7) {y 7→ m ∗ n, x 7→ n′} ⊢ while x > 1 do

y := y ∗ x; x := x − 1 ⇓ {y 7→ m ∗ n ∗ n′!, x 7→ 1} by induction hypothesis

(8) {y 7→ m, x 7→ n′+1} ⊢ (y := y ∗ x; x := x − 1);
while x > 1 doy := y ∗ x; x := x − 1
⇓ {y 7→ m ∗ n ∗ n′!, x 7→ 1} by rule reduce-sequence on (6), (7)

(9) {y 7→ m, x 7→ n′+1} ⊢ while x > 1 do

y := y ∗ x; x := x − 1 ⇓ {y 7→ m ∗ n ∗ n′!, x 7→ 1} by rule reduce-whiletrue on (1), (8)

Now the theorem will follow directly from the lemma, taking m = 1:

{y 7→ 1, x 7→ n} ⊢ while x > 1 do y := y ∗ x; x := x − 1
⇓ {y 7→ n!, x 7→ 1} by the lemma above where n = n, m = 1

Discussion. If we were being more rigorous, we would show expression
evaluation explicitly through rules instead of just saying “by expression
evaluation.” However, for the assignment, we allow you to do the induc-
tive proof without explicitly following all the expression evaluation rules,
so I have left them out of the notes here as well.

8

