
1

1

Unit Testing:
Philosophy and tools

Nels Eric Beckman

Institute for Software Research

February 1, 2007

Unit Testing: Philosophy and Tools
ISR

2

Credit Where Credit is Due

• Significant sections of
this lecture are derived
from “Pragmatic Unit
Testing.”

• Andrew Hunt and
David Thomas

• An excellent, practical
book. You should buy it.

• Available in Java and
.NET flavors.

2

Unit Testing: Philosophy and Tools
ISR

3

Today’s Lecture:

• Unit Tests
• Testing classes and methods against a contract

• Unit testing is good for YOU!

• Testing Harnesses*
• Making tests automatic, repeatable and

independent

• Mock Objects*
• Testing one piece of code at a time

*Demo included!

Unit Testing: Philosophy and Tools
ISR

4

Unit Tests

• Do you spend a large amount of time
using the debugger?

• Do you ever find yourself saying things
like,
• “That’s impossible!”
• “I don’t understand how this could

happen.”

• Unit tests be a big help.

3

Unit Testing: Philosophy and Tools
ISR

5

Unit Tests: Definitions

• Unit tests are whitebox tests written by
developers, and designed to verify small
units of program functionality.

Unit Testing: Philosophy and Tools
ISR

6

Unit Tests: Definitions

• Unit tests are whitebox tests written by
developers, and designed to verify small
units of program functionality.

• Key Metaphor: I.C. Testing
• Integrated Circuits are tested individually

for functionality before the whole circuit is
tested.

4

Unit Testing: Philosophy and Tools
ISR

7

Unit Tests: Definitions

• Unit tests are whitebox tests written by
developers, and designed to verify small
units of program functionality.

• Whitebox – Unit tests are written with
full knowledge of implementation
details.

Unit Testing: Philosophy and Tools
ISR

8

Unit Tests: Definitions

• Unit tests are whitebox tests written by
developers, and designed to verify small
units of program functionality.

• Developers – Unit tests are written by
you, the developer, concurrently with
implementation.

5

Unit Testing: Philosophy and Tools
ISR

9

Unit Tests: Definitions

• Unit tests are whitebox tests written by
developers, and designed to verify small
units of program functionality.

• Small Units – Unit tests should isolate
one piece of software at a time.
• Individual methods and classes

Unit Testing: Philosophy and Tools
ISR

10

Unit Tests: Definitions

• Unit tests are whitebox tests written by
developers, and designed to verify small
units of program functionality.

• Verify – Make sure you built ‘the
software right.’ Testing against the
contract.
• Contrast this with validation.

6

Unit Testing: Philosophy and Tools
ISR

11

Testing Against a Contract

• A method’s contract is a statement of the
responsibilities of that method, and the
responsibilities of the code that calls it.

• Think, a legal contract
• If you pay me exactly $30,000
• I will build a new room on your house

• Helps to pinpoint responsibility.

Unit Testing: Philosophy and Tools
ISR

12

More on Contracts

• Methods and objects all have contracts!
• Sometimes they are explicit
• Sometimes implicit

• Let’s see some examples...

7

Unit Testing: Philosophy and Tools
ISR

13

Implicit Contracts

• Sometimes the contract exists implicitly
in the code and the mind of the
programmer.

public boolean isThisALeapYear(Calendar today)
{

return (today.get(Calendar.YEAR) % 4 == 0);
}

Unit Testing: Philosophy and Tools
ISR

14

Informal Contracts

• Sometimes a method’s contract is
informally described in comments.

8

Unit Testing: Philosophy and Tools
ISR

15

Informal Contracts
/** Applies a move to a board. This assumes
that the move is one that was returned by
getAllMoves. Upon applying the move, it will
also update the value of the board and switch
the board's turn. */

public void applyMove(Move mv) {

byte row = 0, col = 0, bck = 0, ...;

byte opTurn = (mTurn == BLK) ? WHT : BLK;

OthelloMove appM = null;

boolean good = false;

Unit Testing: Philosophy and Tools
ISR

16

Pre/Post Conditions, Invariants

• You may remember these from early computer
science classes.
• And you may never use them!

• Precondition
• Things that must be true of parameters and fields

for call to be ‘legal.’

• Postcondition
• Things this method guarantees will be true of fields

and the return value after being called.

• Invariants
• Something that will always be true.
• Usually describe objects and fields.

9

Unit Testing: Philosophy and Tools
ISR

17

Pre/Post Conditions, Invariants
public class BankingExample {

public static final int MAX_BALANCE = 1000;
//Invariant: The balance will always be greater than
// zero, but less than MAX_BALANCE.
private int balance;

//Precondition: amount is greater than zero
//Postcondition: the new balance is set to the
// old balance plus amount.
public void credit(int amount) { ... }

//Precondition: amount is greater than zero
//Postcondition: balance set to the old balance
// minus amount
public void debit(int amount) { ... }

Unit Testing: Philosophy and Tools
ISR

18

Machine-Readable
public class BankingExample {

public static final int MAX_BALANCE = 1000;
//@ invariant balance >= 0 && balance <=MAX_BALANCE;
private int balance;

//@ requires amount > 0;
//@ ensures balance = \old(balance) + amount;
public void credit(int amount) { ... }

//@ requires amount > 0;
//@ ensures balance = \old(balance) - amount;
public void debit(int amount) { ... }

10

Unit Testing: Philosophy and Tools
ISR

19

Today’s Lecture:

• Unit Tests
• Testing against a contract

• Unit testing is good for YOU!
• Testing Harnesses*

• Making tests automatic, repeatable and
independent

• Mock Objects*
• Testing one piece of code at a time

*Demo included!

Unit Testing: Philosophy and Tools
ISR

20

Unit testing is good for YOU!

• Unit testing
• Seems like a good idea, in theory.
• Often, people just don’t do it.
• Let’s look at some common excuses why

developers often don’t.

11

Unit Testing: Philosophy and Tools
ISR

21

Writing Unit Tests Takes Too Long!

• Unit testing implies a pay-as-you-go
model, rather than pay-at-the-end.

• But there’s more
• Unit testing implies linear work, rather

than exponential.
• Think of clearing a field

• Regular mowing, versus
• Bushwhacking

Unit Testing: Philosophy and Tools
ISR

22

Linear vs. Exponential Work

• Unit testing implies:
• Steady productivity throughout the

development cycle.

• Without unit testing:
• Productivity starts off higher, but dives at

the end when the testing starts.
• Relearn code you wrote weeks or months

ago.

12

Unit Testing: Philosophy and Tools
ISR

23

Questions Worth Asking

• How much time do you spend debugging
code you or others have written?

• How much time do you spend reworking
code that you thought was working but
turned out to have major bugs?

• How much time do you spend isolating a
bug to its source?

• Often, this time add up fast.
• Unit testing can help reduce it.

Unit Testing: Philosophy and Tools
ISR

24

It’s Not My Job to Test!

• If you’re worried about taking your
testers’ jobs, don’t!
• They have plenty to worry about with

integration, acceptance tests, etc.

• As programmers, our job is to create
working code.
• Until you write a unit test, you have no idea.

13

Unit Testing: Philosophy and Tools
ISR

25

They Aren’t in the Process!

• Often developers say things like,
• “Our company runs different types of tests.”
• “Our test machine isn’t set up for unit

tests.”
• “We have a different process.”

Unit Testing: Philosophy and Tools
ISR

26

Unit Tests are Personal

• Unit tests test the code you write.

• They are meant to be run on a
developer’s workstation.
• If they are not part of source control, no

problem!
• If no one else on your team uses them, no

problem!

14

Unit Testing: Philosophy and Tools
ISR

27

Unit Tests are Personal

• Think of unit testing the same way you think
of your text editor.
• “I use Notepad, he uses Emacs.”
• The main difference being, the relative quality of

your code.

• Of course, there are benefits to a culture of
unit testing.
• Automated regression tests & source control
• Easier Integration
• But it isn’t necessary to reap the benefits

Unit Testing: Philosophy and Tools
ISR

28

The Take-Away Message

• Unit tests are a tool, just like an IDE,
that help you, the individual developer,
write better code.

15

Unit Testing: Philosophy and Tools
ISR

29

Today’s Lecture:

• Unit Tests
• Testing against a contract

• Unit testing is good for YOU!
• Testing Harnesses*

• Making tests automatic, repeatable and
independent

• Mock Objects*
• Testing one piece of code at a time

*Demo included!

Unit Testing: Philosophy and Tools
ISR

30

Testing Harnesses

• Testing harnesses are tools that help
manage and run your unit tests.

• Help us to achieve three properties of
good unit tests, which are:
• Automatic
• Repeatable
• Independent

16

Unit Testing: Philosophy and Tools
ISR

31

Meaning...

• Automatic
• With one touch, our tests should be run and

checked for completion. We want a fuzzy
feeling with as little work as possible.

• Repeatable
• Any developer can run the tests and they

will work right away.

• Independent
• Your tests can be run in any order and they

will still work.

Unit Testing: Philosophy and Tools
ISR

32

JUnit: A Java Unit Testing Harness

• Provides one-touch
functionality for
running all of your
tests.

• Easy to verify
success or failure.

• Source of failure is
immediately
obvious.

17

Unit Testing: Philosophy and Tools
ISR

33

JUnit is Also a Testing Framework

• We write tests using code included in the
JUnit framework.
• @Test annotation tells the harness that you

have written a test.
• org.junit.Assert is full of helpful

assertion tools.

Unit Testing: Philosophy and Tools
ISR

34

JUnit Demo Time

• Testing the ShoppingCart

18

Unit Testing: Philosophy and Tools
ISR

35

Other Helpful JUnit Features

• @BeforeClass
• Run once before all test methods in class.

• @AfterClass
• Run once after all test methods in class.

• Together, these methods are used for
setting up computationally expensive
test elements.
• E.g., database, file on disk, network…

Unit Testing: Philosophy and Tools
ISR

36

Other Helpful JUnit Features

• @Before
• Run before each test method.

• @After
• Run after each test method.

• Make tests independent by setting and
resetting your testing environment.
• E.g., creating a fresh object

19

Unit Testing: Philosophy and Tools
ISR

37

foreach class:
setUpBeforeClass();

foreach test:
setUp();
run test;
tearDown();

tearDownAfterClass();

Unit Testing: Philosophy and Tools
ISR

38

Helpful JUnit Assert Statements

• assertEquals(float expected,
float actual,
float delta)

• Used for so that floating point equality is unnecessary.

• assertSame(Object expected, Object actual)
• Tests for two objects are the same in memory.

• assertNull(java.lang.Object object)
• Asserts that a reference is null.

• assertNotNull(String message, Object object)
• Many ‘not’ asserts exists.
• Most asserts have an optional message that can be printed.

20

Unit Testing: Philosophy and Tools
ISR

39

Today’s Lecture:

• Unit Tests
• Testing against a contract

• Unit testing is good for YOU!
• Testing Harnesses*

• Making tests automatic, repeatable and
independent

• Mock Objects*
• Testing one piece of code at a time

*Demo included!

Unit Testing: Philosophy and Tools
ISR

40

Unit Testing and Isolation

• Unit testing is all about isolating bugs.
• When a unit test fails, we should know

almost exactly in the source code where the
bug lies.

• Mock objects to the rescue!
• Allow us this isolation.

21

Unit Testing: Philosophy and Tools
ISR

41

Unit Testing and Speed

• Running our tests should be fast…
• If they aren’t people won’t run them.

• But what about bringing up and down
environment code?
• E.g, network sockets, databases, date-

related code

• Mock objects to the rescue!
• We make our own, simplified versions.

Unit Testing: Philosophy and Tools
ISR

42

Unit Testing and Unusual Situations

• We want to test our code in weird
situations.
• E.g., daylight-saving time, network outages,

file permission errors

• We can’t force a network outage.
• At least, not in a repeatable way…

• Mock objects to the rescue!
• We define the behavior.

22

Unit Testing: Philosophy and Tools
ISR

43

Additional Benefit: Protocol Checks

• We want to make sure our code uses
other code correctly.
• E.g., network sockets are open before they

are read.

• Mock objects to the rescue!
• Protocol conformance can be verified.

Unit Testing: Philosophy and Tools
ISR

44

How EasyMock Works

23

Unit Testing: Philosophy and Tools
ISR

45

How EasyMock Works

getSize()
returns 8

Unit Testing: Philosophy and Tools
ISR

46

How EasyMock Works

getSize()
returns 8getParent()
returns null

24

Unit Testing: Philosophy and Tools
ISR

47

How EasyMock Works

getSize()
returns 8

Unit Testing: Philosophy and Tools
ISR

48

How EasyMock Works

getSize()
returns 8getParent()
returns null

25

Unit Testing: Philosophy and Tools
ISR

49

EasyMock Demo Time

• Exceptional Conditions (NTP)

• Interacting Code (AST)

• Protocol Conformance (Iterator)

• (easymock.org, for more!)

Unit Testing: Philosophy and Tools
ISR

50

Other Neat Features

• EasyMock has a ton of features.
• Stub behavior

• When you don’t really care if or when a method
is called.

• Nice mocks
• Return defaults instead of throwing exceptions.

• Check calling order between several mocks
• Mock Reset
• Argument Matchers
• Different behavior for same call
• Intricate return behavior

26

Unit Testing: Philosophy and Tools
ISR

51

Take-Away Points

• Unit tests are tests by and for
programmers.
• Think of them as a tool, like an IDE.

• Testing harnesses and mock objects
make the hard parts easier.
• Automatic, repeatable, independent

• Unit test generation is a viable option.
• Helps to achieve high code coverage.
• Be careful about code intent versus

implementation.

52

The end

Slides and source code available
online.

