
4

Spec #

• A checker for C# programs

– Finds null pointers, array dereferences…

– Checks Hoare logic specifications

• Expressed in Java Modeling Language (JML)

• Goals:

– Find errors

– Prove correctness

• Developed at Microsoft Research

– Freely available for non-commercial use

JA

5

Demo: Contains in Spec #

JA

8

Data Invariants

• Data Invariant
– A predicate that is true on every entry and exit of ADT functions

• Not usually part of public specification

• On function entry, you can count on the invariant because the last
function left the data in a good state

• Must verify that all ADT functions preserve invariant

– Does not have to be true in middle of function

• May violate invariant temporarily while updating state

• Motivation
– Reduces duplication in pre-/post-conditions

• e.g. sorted(s)

– Hides representation decision from clients

• Why should public spec say the array is sorted? That’s an internal
decision that shouldn’t affect clients if it were to change.

JA

16

Demo: SimpleSet in Spec #

JA

25

Spec#’s Limitations

• Does not check for some errors

– Infinite loops, arithmetic overflow

– Functional properties not stated by user

– Non-functional properties

• May report false positives

– Often can be solved with an extra precondition or invariant

– Spurious warnings can also be disabled

JA

26

Spec #’s Tradeoffs

• Attempts to automate Hoare-logic style checking

• Benefits
– Easier than manual proof

– Sound

– Automatically checked

• Drawbacks
– Still quite labor-intensive

– Builds in a particular methodology

• Not all code may match it

• Applicability
– Checking of critical code

• When it’s worth the extra effort to get it right

• When you can’t do a complete Hoare-logic proof

– Still must use other analysis techniques

• The spec, design, quality attributes must also be validated!

JA

