
1

1

Testing

All material © Jonathan Aldrich
and William L Scherlis 2007
No part may be copied or used
without written permission.

Primary source: Kaner, Falk, Nguyen.
Testing Computer Software (2nd Edition).

Jonathan Aldrich
Assistant Professor

Institute for Software Research

School of Computer Science
Carnegie Mellon University

jonathan.aldrich@cs.cmu.edu
+1 412 268 7278

17171717----654/17654/17654/17654/17----754754754754

Analysis of Software ArtifactsAnalysis of Software ArtifactsAnalysis of Software ArtifactsAnalysis of Software Artifacts Spring 2007

2

Context: Software Quality Assurance

2

3
17-654 Spring 2007 –Aldrich © 2007

Design intent: Validation and Verification

Sources of flaws For software: “flaw” = “defect” = “fault” = “bug”

• Flaws in understanding of intent
� Validation – Does the system do the right thing?
� Have we correctly analyzed the problem?

� Flaws in specification – incorrect capture of requirements
� Intent
• What the system does—its functionality
• How the system accomplishes its task—performance
• How the system responds to unexpected situations—robustness
• What services are provided by system infrastructure—environment
• Libraries, frameworks, hardware, etc.

• Flaws in realization of intent
� Verification – Does the system do the thing right?
� Have we correctly implemented a solution?

� Flaws in design and architecture
• Incorrect high-level development decisions

� Flaws in code implementation
� Flaws in infrastructure implementation

Specifications in use
Formal
Declarations
Stories
Models
Implicit
Test cases
Reference code
etc

Primary focus
of this course

4
17-654 Spring 2007 –Aldrich © 2007

Find that bug!

• A published (Mathematica) version of binary search :

BinarySearch[l_List, k_Integer,
low_Integer, high_Integer, f_] :=

Module[{mid = Floor[(low + high)/2]},
If [low > high, Return[low - 1/2]];
If [f[l[[mid]]] == k, Return[mid]];
If [f[l[[mid]]] > k,

BinarySearch[l, k, 1, mid-1, f],
BinarySearch[l, k, mid+1, high, f]]]

This library code contains a flaw that was not detected for five years.
� The first recursive call to BinarySearch should read:

BinarySearch[l, k, low, mid-1, f]

� Turns a logarithmic algorithm into a linear one

Moral: not all defects cause incorrect output
� How would you test for this?

Mathematica Journal v5i4; DiscreteMath`Combinatorica` package error

3

5
17-654 Spring 2007 –Aldrich © 2007

Software quality assurance and testing

• A critical software engineering challenge

• Difficulties
� Expense: Testing and evaluation typically consume more time and cost
in the software engineering process than design and code development
• Typically 50% of total cost is attributable to quality assurance.

� Precision: Almost impossible to completely succeed in testing and QA
• “Very high quality” is rarely achieved, even for critical systems
• Major gaps in testing and inspection

� Consequential: The consequences (downside, upside) are considerable
• NIST report: $60B lost
• Developers: Holding back features and new capability

• Trends
� There is rapid evolution in technology and practice (more later)

• Important new techniques are emerging
• Technical tools
• Language

� Engineering for “assurability” or “testability”
• Requirements
• Architecture, design, and other models
• Implementation practices, languages, tools

� Process
• Metrics and measurement

6
17-654 Spring 2007 –Aldrich © 2007

Principal Evaluative Techniques

• Testing
� Direct execution of code on test data in a controlled environment
• Functional and performance attributes
• Component-level
• System-level

� Identify and locate faults – no assurance of complete coverage

• Inspection
� Human evaluation of code, design documents (specs and models)
• Structural attributes
• Design and architecture
• Coding practices
• Algorithms and design elements

� Creation and codification of understanding

• Static analysis
� Tool-supported direct static evaluation of formal software

artifacts
• Non-functional attributes
• Null references
• Unexpected exceptions
• Memory usage

� Can yield partial positive assurance

Other techniques
Dynamic analysis
Model checking

Verification

4

7
17-654 Spring 2007 –Aldrich © 2007

Software quality methods – a survey

Evaluative techniques

• Testing
� System and integration
� Unit
� Performance
� Function
� Usability

• Test management
� Strategy
� Coverage
� Fault introduction
� Resource management

• Inspection
� Requirements
� Design
� Code

• Static analysis
� Walk tree of code text
� Follow control paths
� Follow data paths

• Dynamic analysis
� Monitoring and runtime checking
� Instrumentation of code
� Simulation of code

Preventive techniques

• Requirements
� Quality stakeholders
� Non-functional attributes

• Process
� Measurement and feedback

• CMM, TSP, etc.
� Testers and their role

• E.g., S&S, agile
� Risk mgmt

• Architecture
� Robustness and self-healing

• Design
� Robustness patterns
� Safe APIs
� Analysis

• Coding
� Safe languages
� Safe coding practices
� Encapsulation / sandboxing

• Specific practices
� Use of tools
� Defect tracking
� Root cause analysis

8
17-654 Spring 2007 –Aldrich © 2007

Criteria for evaluating techniques

• Cost
� Ease of use
� Resource requirements:
people, time, computing

• Timeliness: when we get
answers
� E.g., unit test with scaffold
� E.g., mock-up and
prototyping

• Accuracy
� False positives
� False negatives

• Development value
� E.g., Easier to modify code,
add features

� Risks of adoption

• Metrics: observability of
outcomes

• Scope: What kinds of defects
it addresses
� System scale and complexity
� Error vs. fault focus
� Non-functional attributes:
performance, usability,
security, safety, etc.

� Functionality

• Integration and value during
development
� Defect prevention support
� Architecture design
� Code management
� Modeling and design intent
capture

5

9

Faults, Errors, Failures, and Hazards

10
17-654 Spring 2007 –Aldrich © 2007

Faults, Errors, Failures, Hazards

• Fault
� Type 1 – a flaw in an attached physical component
• Traditional notion of a fault in hardware reliability theory (physical parts wearing out)

� Type 2 – a static flaw in software code
• Syntactically local in code or structurally pervasive
• Software faults cause errors only when triggered by use.

• Error – incorrect state at execution time caused by a fault
� E.g., buffer overflow, race condition, deadlock, corrupted data

• Failure – effect of an error on system capability

� E.g., program crashes, attacker gains control, program becomes unresponsive,
incorrect output

• Severity – cost of failure to stakeholders
� E.g., Loss of life, privacy compromise

• Hazard – product of failure probability and severity
� Equivalent to risk exposure

6

11
17-654 Spring 2007 –Aldrich © 2007

Relating faults, errors, failures, hazards

• The unconstrained situation (black box)
� Any fault can potentially lead to any failure

� Dependability and security challenges cannot be prioritized

• Commitment to mission profile
� Mission profile defines hazards
• It determines relative priorities for action

• Which faults/errors/failures have greatest hazard/risk?

• Commitments to design and structure
� Design commitments constrain the mapping

� An ideal design fully mitigates faults without affecting
system functionality

� Examples
• Architecture and structure

• E.g., self-healing, autonomic architectures

• E.g., domain-specific architectures

• Coding practice and patterns

• E.g., state estimators, robustness tests, etc.

• E.g., tools, patterns, anti-patterns

• E.g., measurements of potential fault sites and mitigations

• Tools and measurements

12
17-654 Spring 2007 –Aldrich © 2007

Fault Tolerance

• How does the system behave in the presence of errors in
the environment

• Tolerating the faults of sensors, affectors, other physical
components in a system
� “Tolerating” means diminishing the likelihood or severity of

failure in response to the fault

• Examples
� Memory parity errors
� Network transient faults
� Sensor failures
� Actuator anomalies
� Processor transient faults

7

13
17-654 Spring 2007 –Aldrich © 2007

Robustness

• What happens when the system receives incorrect inputs?
� Important for security

� Examples:
• Buffer under/overflow
• Protocol violations

• Null references
• Precondition errors

� “Fault tolerance” with respect to design faults in other
software components.

14
17-654 Spring 2007 –Aldrich © 2007

Robustness

• A range of possible responses
� -1
� Exception raised
� Silent failure
� Recoverable system crash
� Unrecoverable (hard reboot) system crash
� Corrupted local data
� Corrupted database

• Examples of robustness failures
� Windows device driver errors
� API misuse by client code
� Person-in-the-loop

• Testing for robustness
� “Beyond the edge cases”

8

15
17-654 Spring 2007 –Aldrich © 2007

Buffer overflow errors / exploits

#include
#define BUF_LEN 40
void main(int argc, char **argv) {

char buf[BUF_LEN];
if (argv > 1) {

printf(“buffer length: %d \n parameter length: %d”,
BUF_LEN, strlen(argv[1]));

strcpy(buf, argv[1]);
}

}

% bad.exe AAAABBBBCCCC

% bad.exe AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMM

www.windowsecurity.com

What are the results of an input that is too long?

16
17-654 Spring 2007 –Aldrich © 2007

Java buffer overflow

public class Bad {
static final int bufLen = 40;
public static void main (String argv[]) {

char[] buf = new char[bufLen];
if (argv.length >0) {

int len = argv[0].length();
char[] tmp = argv[0].toCharArray();

System.out.println("buffer length: " + bufLen +
" parameter length: " + len);

System.arraycopy(tmp, 0, buf, 0, len);
}

}
}

% java Bad AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMM

buffer length: 40 parameter length: 52
java.lang.ArrayIndexOutOfBoundsException
at java.lang.System.arraycopy(Native Method)
at Bad.main(Bad.java:16)

Exception in thread "main"

Severity of failure is
decreased relative to C

9

17
17-654 Spring 2007 –Aldrich © 2007

API and Framework Usage Errors

• Related to robustness errors

• Aspects of API and framework usage
� Method call protocol (order of calls and state management)
� Respect for callbacks (library is only caller)
� Required set up and tear down
� Aliasing (inappropriate object references)
� Effects (inappropriate access or update to state)
� Locking roles (e.g., caller must acquire a lock)
� Use of threads (e.g., Java AWT)
� Exception handling (e.g., correct handling of library exceptions)

• Key point
� Many developers have difficulty in understanding and respecting
the “bureaucracy” of an API

� How to model?

� How to assure?

18
17-654 Spring 2007 –Aldrich © 2007

API: Hello World MFC: “Easy as 1, 2, 3”

int APIENTRY WinMain(<<CUT>>)
{

<<CUT>>
// Perform application initialization:
if (!InitInstance (hInstance, nCmdShow)) return FALS E;
hAccelTable = LoadAccelerators(hInstance, (LPCTSTR)I DC_HELLO);

// Main message loop:
while (GetMessage(&msg, NULL, 0, 0))
if (!TranslateAccelerator(msg.hwnd, hAccelTable, &m sg)) {

TranslateMessage(&msg); DispatchMessage(&msg);

}
<<CUT>>

}

�
�

�

Program runs fine

10

19
17-654 Spring 2007 –Aldrich © 2007

API: Hello World MFC: or 2, 1, 3

int APIENTRY WinMain(<<CUT>>)
{

<<CUT>>
// Perform application initialization:
hAccelTable = LoadAccelerators(hInstance, (LPCTSTR)I DC_HELLO);
if (!InitInstance (hInstance, nCmdShow)) return FALS E;

// Main message loop:
while (GetMessage(&msg, NULL, 0, 0))
if (!TranslateAccelerator(msg.hwnd, hAccelTable, &m sg)) {

TranslateMessage(&msg); DispatchMessage(&msg);

}
<<CUT>>

}

�
�

�

Program runs fine

20
17-654 Spring 2007 –Aldrich © 2007

API: Hello World MFC: but not 2, 3, 1

int APIENTRY WinMain(<<CUT>>)
{

<<CUT>>
// Perform application initialization:
hAccelTable = LoadAccelerators(hInstance, (LPCTSTR)I DC_HELLO);
// Main message loop:

while (GetMessage(&msg, NULL, 0, 0))
if (!TranslateAccelerator(msg.hwnd, hAccelTable, &m sg)) {

TranslateMessage(&msg); DispatchMessage(&msg);
}

if (!InitInstance (hInstance, nCmdShow)) return FALS E;
<<CUT>>

}

�

�

�

Lost process that must be killed
from the Task Manager…

MFC Framework gives no compile or
runtimehelp to identify this error

11

21
17-654 Spring 2007 –Aldrich © 2007

API: Hello World MFC: but not 2, 3, 1

• Could MFC detect the incorrect use of the API?

� Instead of:
hello.exe - 0 error(s), 0 warning(s)

� We should get:
Error: GetMessage() called before InitInstance() – I llegal API use
hello.exe - 1 error(s), 0 warning(s)

� Or at least:
Warning: GetMessage() called before InitInstance() – API warning
hello.exe - 0 error(s), 1 warning(s)

• Call order is a critical property for the API client

� Typically verified by inspection

� Model checking, typestate are emerging approaches

• A more robust design reduces severity of failure

� In this case, by making it easier to identify the fix

22
17-654 Spring 2007 –Aldrich © 2007

API Bureaucracy and Usability

public void focusLost(FocusEvent fevt) {

<<CUT>>

if (fieldName.equals(AGE)) {

try {

int i = Integer.parseInt(val);

status.setText("Age is Valid.");

}

catch (NumberFormatException nfe) {

// FAILED VALIDATION

// empty field

tf.setText("");

// get the focus back to try again

tf.requestFocus();

status.setText("Failed Field Validation. Re-enter.");

}

<<CUT>>

}

When a bad age is typed focus
is not sent back to the “Age”

field as the code requests.
It goes to birthday.

Example from: http://www.javaworld.com/javaworld/jw-06-2001/jw-0622-traps.html?

12

23
17-654 Spring 2007 –Aldrich © 2007

API Bureaucracy and Usability

// get the focus back to try again

new FocusRequester(c); // c is the JTextField

class FocusRequester implements Runnable {

private Component comp;

public FocusRequester(Component comp) {

this.comp = comp;

try {

SwingUtilities.invokeLater(this);

}

catch(Exception e) {

e.printStackTrace();

}

}

public void run() { comp.requestFocus(); }

}

Swing utility method
invokeLater() used to “re-invoke”

the age event correctly

Example from: http://www.javaworld.com/javaworld/jw-06-2001/jw-0622-traps.html?

24
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we assess our test suites?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

13

25
17-654 Spring 2007 –Aldrich © 2007

1. Testing: What and Why

• What is testing?
� Direct execution of code on test data in a controlled environment

• Goals of testing
� To reveal failures
• Most important goal of testing

� To assess quality
• Difficult to quantify, but still important

� To clarify the specification
• Always test with respect to a spec

• Testing shows inconsistency

• Either spec or program could be wrong

� To learn about program
• How does it behave under various conditions?

• Feedback to rest of team goes beyond bugs

� To verify contract
• Includes customer, legal, standards

26
17-654 Spring 2007 –Aldrich © 2007

Testing is NOT to show correctness

• Theory: “Complete testing” is impossible
� For realistic programs there is always untested input
� The program may fail on this input

• Psychology: Test to find bugs, not to show correctness
� Showing correctness: you fail when program does
� Psychology experiment
• People look for blips on screen

• They notice more if rewarded for finding blips than if penalized for
giving false alarms

� Testing for bugs is more successful than testing for correctness
• [Teasley, Leventhal, Mynatt & Rohlman]

14

27
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we assess our test suites?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

28
17-654 Spring 2007 –Aldrich © 2007

2. What do we test – the Focus of Concern

Context of use

Subsystem
Subsystem

Integration

Sensor
Affector

Sensor

Unit

Unit

System

Examples of systems in context
• Mars rover

• Cell phone
• Clothes washing machine
• Point of sale system
• Telecom switch
• Software development tool

15

29
17-654 Spring 2007 –Aldrich © 2007

The Focus of Concern

Context of use

Subsystem
Subsystem

Integration

Sensor
Affector

Sensor

Unit

Unit

System

Levels of Testing
• User testing, field testing

• System testing
• With or without hardware

• Integration testing
• Unit testing

30
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Back end
services

Unit Client

16

31
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Unit Client

Examples: Database,
Network,

Interconnected systems

Example: Network client with
GUI

Back end
services

Code
to be
tested

32
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Stub Unit Driver

Test
support
code

Test
support
code

Substitute:
Test

support
code

Code
to be
tested

17

33
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Unit

Code
to be
tested

34
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Unit

Collaborating
unit code

Code
to be
tested

Unit

18

35
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Unit

Code
to be
tested

Unit

Cluster

36
17-654 Spring 2007 –Aldrich © 2007

Unit Test and Scaffolding

Stub

Unit

Driver

ClusterCode
to be
tested

Unit

19

37
17-654 Spring 2007 –Aldrich © 2007

Unit Test for Components

• Unit testing
� Separate testing of individual components of a system

• Purpose
� Catch bugs early
� Improve coverage
� Validate internal interface/API designs
� Catch bugs before code is written
• Use test suites to guide implementation
• Test components before client/service code is available

• Done by development teams
� Original component developer
� Tester / collaborator

• Integration testing
� Test groups of interacting components

• Exercise interactions among code components
• Test in context of portions of the real environment

� Same techniques and tools as for unit testing

38
17-654 Spring 2007 –Aldrich © 2007

Techniques for Unit Testing 1: Scaffolding

• Use “scaffold” to simulate external code

• External code – scaffold points
1. Client code
2. Underlying service code

1. Client API
� Model the software client for the service
being tested

� Create a test driver
� Object-oriented approach:

• Test individual calls and sequences of calls

Testers write
driver code

Unit Driver

20

39
17-654 Spring 2007 –Aldrich © 2007

Techniques for Unit Testing 1: Scaffolding

• Use “scaffold” to simulate external code

• External code – scaffold points
1. Client code
2. Underlying service code

2. Service code
� Underlying services

• Communication services
• Model behavior through a communications interface
• Database queries and transactions

• Network/web transactions
• Device interfaces

• Simulate device behavior and failure modes
• File system

• Create file data sets
• Simulate file system corruption

• Etc

� Create a set of stub services or mock objects
• Minimal representations of APIs for these services

Stub

Testers write
stub code

Unit

40
17-654 Spring 2007 –Aldrich © 2007

Scaffolding

• Purposes
� Catch bugs early

• Before client code or services are available

� Limit the scope of debugging
• Localize errors

� Improve coverage
• System-level tests may only cover 70% of code [Massol]

• Simulate unusual error conditions – test internal robustness

� Validate internal interface/API designs
• Simulate clients in advance of their development
• Simulate services in advance of their development

� Capture developer intent (in the absence of specification documentation)
• A test suite formally captures elements of design intent
• Developer documentation

� Enable division of effort
• Separate development / testing of service and client

� Improve low-level design
• Early attention to ability to test – “testability”

Stub Unit
Driver

21

41
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we assess our test suites?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

42
17-654 Spring 2007 –Aldrich © 2007

What makes a test case valuable?

• Value-driven testing
� Focus on tests that have biggest benefit per unit cost

• Value is driven by quality improvement
� Some value of information as well

• Value Factors
� Does it find a bug?
� How severe is the bug?
� How common is the bug?

� How easy is it to fix the bug?
� Is it distinct from other tests?
• Unique bug? Unique code? Unique domain coverage?

� How general is it?
� What did we learn about the program?

• Much of this is hard to predict in advance!

22

43
17-654 Spring 2007 –Aldrich © 2007

3. How do we select a set of good tests

• Test coverage

� Why “coverage”?
• All inputs cannot be tested.

� Consider strategy for testing these systems:
• Visual Studio, Eclipse, etc.
• Automotive navigation/communication system – with many
configurations
• An operating system
• An e-commerce container framework (J2EE, .net) and its
components

� Only very rarely can we test exhaustively.
• Deterministic embedded controllers

44
17-654 Spring 2007 –Aldrich © 2007

Test coverage – Ideal and Real

• An Ideal Test Suite
� Uncovers all errors in code
• That are detectable through testing

� Uncovers all errors in requirements capture
• All scenarios covered

• Non-functional attributes: performance, code safety, security, etc.

� Minimum size and complexity
� Uncovers errors early in the process
• Ideally when code is being written (“test cases first”)

• A Real Test Suite
� Uncovers some portion of errors in code
� Has errors of its own
� Assists in exploratory testing for validation
� Does not help very much with respect to non-functional attributes
� Includes many regression tests
• Inserted after errors are repaired to ensure they won’t reappear

23

45
17-654 Spring 2007 –Aldrich © 2007

Ways of analyzing coverage

• Code visibility – glass box or white box
• Visibility to internal code elements – better for non-functional attributes
• Can use design information to guide creation and analysis of test suites
• Can test internal elements directly

• Code coverage analysis

• Code visibility – black box
• Cannot see internal code elements of the service being tested
• Test through the public API – better for functional attributes

• Domain coverage analysis

46
17-654 Spring 2007 –Aldrich © 2007

White Box: Statement Coverage

• Statement coverage
� What portion of program statements
(nodes) are touched by test cases

• Advantages
� Test suite size linear in size of code

� Coverage easily assessed

• Issues
� Dead code is not reached

� May require some sophistication to
select input sets (McCabe basis paths)

� Fault-tolerant error-handling code
may be difficult to “touch”

� Metric: Could create incentive to
remove error handlers!

24

47
17-654 Spring 2007 –Aldrich © 2007

White Box: Branch Coverage

• Branch coverage
� What portion of condition branches are
covered by test cases?

� Or: What portion of relational expressions
and values are covered by test cases?
• Condition testing (Tai)

� Multicondition coverage – all boolean
combinations of tests are covered

• Advantages
� Test suite size and content derived
from structure of boolean expressions

� Coverage easily assessed

• Issues
� Dead code is not reached

� Fault-tolerant error-handling code
may be difficult to “touch”

48
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

25

49
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

50
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

26

51
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

52
17-654 Spring 2007 –Aldrich © 2007

White Box: Path Coverage

• Path coverage
� What portion of all possible paths through
the program are covered by tests?

� Loop testing: Consider representative and
edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
� Better coverage of logical flows

• Disadvantages
� Not all paths are possible, or necessary
• What are the significant paths?

� Combinatorial explosion in cases unless
careful choices are made
• E.g., sequence of n if tests can yield
up to 2^n possible paths

� Assumption that
program structure
is basically sound

27

53
17-654 Spring 2007 –Aldrich © 2007

White Box: Assessing structural coverage

• Coverage assessment tools
� Track execution of code by test cases
� Techniques
• Modified runtime environment (e.g., special JVM)
• Source code transformation

• Count visits to statements
� Develop reports with respect to specific coverage criteria

• Example: Clover tool for JUnit tests

54
17-654 Spring 2007 –Aldrich © 2007

Clover in Eclipse

• Breakdown by package
and class

• Coverage
� Methods
� Statements
� Conditionals

• Some metric data
� LOC
� Class count
� Method count

28

55
17-654 Spring 2007 –Aldrich © 2007

Clover in Eclipse

• Coverage report in editor window
� Warning for statements not covered by test cases

56
17-654 Spring 2007 –Aldrich © 2007

Transformed Source Code

29

57
17-654 Spring 2007 –Aldrich © 2007

White Box Testing: Checkpoints

• Use “checkpoints” in code
� Access to intermediate values
� Enable checks during execution

Three approaches

• Logging
� Create a log record of internal events
� Tools to support

• java.util.Logging
• org.apache.log4j

� Log records can be analyzed for patterns of events
• Listener events
• Protocol events
• Etc.

• Assertions
� Logical statements explicitly checked during test runs
� (No side effects on program variables)
� Check data integrity

• Absence of null pointer
• Array bounds
• Etc.

• Breakpoints
� Provide interactive access to intermediate state when a condition is raised

58
17-654 Spring 2007 –Aldrich © 2007

Benefits of White-Box

• Tool support can measure coverage
� Helps to evaluate test suite (careful!)
� Can find untested code

• Can test program one part at a time
• Can consider code-related boundary conditions

� If conditions
� Boundaries of function input/output ranges
• e.g. switch between algorithms at data size=100

30

59
17-654 Spring 2007 –Aldrich © 2007

White Box: Limitations

• Is it possible to achieve 100% coverage?

• Can you think of a program that has a defect, even though
it passes a test suite with 100% coverage?

• Exclusive focus on coverage focus misses important bugs
� Missing code
� Incorrect boundary values
� Timing problems
� Configuration issues
� Data/memory corruption bugs
� Usability problems
� Customer requirements issues

• Coverage is not a good adequacy criterion
� Instead, use to find places where testing is inadequate

60
17-654 Spring 2007 –Aldrich © 2007

Black-Box (Functional) Testing

• Verify each piece of functionality of the system
� Black-box: don’t look at the code
� More common in practice than white-box

• Benefit: finds bugs white-box doesn’t
� Think like a user, not a programmer
• The programmer already checked the code!

� Timing, unanticipated errors, UI, concurrency, configuration issues,
performance, hardware failures

• Drawbacks
� No insight into code structure

� But good testers will guess anyway!

31

61
17-654 Spring 2007 –Aldrich © 2007

Black Box: Representative Values

• Test cases have a statistical distribution similar to expected
inputs
� Keep generating random inputs until coverage criterion is met
� Challenge: Do we have a model for the expected input set?

62
17-654 Spring 2007 –Aldrich © 2007

Black Box: Equivalence Class Testing

• Equivalence classes
� A partition of a set
• Usually the input domain of the program

� Based on some equivalence relation
• Intuition: all inputs in an equivalence class will fail or succeed in the
same way

32

63
17-654 Spring 2007 –Aldrich © 2007

Equivalence Class Example

• Program Specification
� Given 3 numbers, output whether a triangle formed from these number
is equilateral, isosceles, or scalene

• Equivalence classes?

64
17-654 Spring 2007 –Aldrich © 2007

Finding Equivalence Classes

• Intuition that test cases are similar
� This is useful, but can be incomplete

• Use cases in the specification
� Impractical if you don’t have the spec
� What if the spec is incomplete?

• One class per code path
� Impractical if you don’t have code

• Risk-based
� Consider a possible error as a risk
� Given that error, what test cases will produce the same result?

33

65
17-654 Spring 2007 –Aldrich © 2007

Equivalence Class Hueristics

• Invalid inputs
• Ranges of numbers
• Membership in a group
• Equivalent outputs

� Can you force the program to output an invalid or overflow
value?

• Error messages
• Equivalent operating environments

66
17-654 Spring 2007 –Aldrich © 2007

What value to choose from an Equivalence Class?

• Risk-based
� Consider the cost of consequences
• Vs. frequency of occurrence
• Focus test data around potential high-impact failures

Risk = (cost of consequence) * (probability of occurrence)

� Challenge: How to model this set of high-consequence failures?

� Selection heuristic – consider boundary values
• Extreme or unique cases at or around “boundaries” with respect to
preconditions or program decision points
• Examples: zero-length inputs, very long inputs, null references, etc.

• Will usually find errors that are present in any other member of the
equivalence class, but may find off-by-one errors as well

� Suited to black box and white box

� Input: Information regarding fault/failure relationships

� Input: Information regarding boundary cases
• Requirements
• Implementation

34

67
17-654 Spring 2007 –Aldrich © 2007

Robustness Testing

• Test erroneous inputs and boundary cases
� Assess consequences of misuse or other failure to achieve preconditions

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

What if the array reference a is null?

Java

68
17-654 Spring 2007 –Aldrich © 2007

Robustness Testing

• Test erroneous inputs and boundary cases
� Assess consequences of misuse or other failure to achieve preconditions
� Bad use of API
� Bad program input data
� Bad files (e.g., corrupted) and bad communication connections
� Buffer overflow (security exploit) is a robustness failure
• Triggered by deliberate misuse of an interface.

• Test apparatus needs to be able to catch and recover from crashes
and other hard errors
� Sometimes multiple inputs need to be at/beyond boundaries

• The question of responsibility
� Is there external assurance that preconditions will be respected?
� This is a design commitment that must be considered explicitly

a[mid]

What if the array reference a is null?

35

69
17-654 Spring 2007 –Aldrich © 2007

Triangle Example

• Program Specification
� Given 3 numbers, output whether a triangle formed from these number
is equilateral, isosceles, or scalene

• Boundary tests?

• Robustness tests?

70
17-654 Spring 2007 –Aldrich © 2007

Combination Testing

• Some errors might be triggered only if two or more variables are
at boundary values

• Test combinations of boundary values
� Combinations of valid input

� One invalid input at a time
• In many cases no added value for multiple invalid inputs

• Subtlety required
� What are the boundary cases for an application that deals with months
and days?

36

71
17-654 Spring 2007 –Aldrich © 2007

Protocol Testing

• Object protocols
� Develop test cases that involve representative sequence of operations
on objects
• Example: Dictionary structure

• Create, AddEntry*, Lookup, ModifyEntry*, DeleteEntry, Lookup, Destroy

• Example: IO Stream

• Open, Read, Read, Close, Read, Open, Write, Read, Close, Close

� Test concurrent access from multiple threads
• Example: FIFO queue for events, logging, etc.

Create Put Put Get Get

Put Get Get Put Put Get

• Approach
� Develop representative sequences – based on use cases, scenarios,
profiles

� Randomly generate call sequences
• Example: Account

• Open, Deposit, Withdraw, Withdraw, Deposit, Query, Withdraw, Close

� Coverage: Conceptual states

• Also useful for protocol interactions within distributed designs

72
17-654 Spring 2007 –Aldrich © 2007

Testing example

• Test preparation
� Client scaffold
� Failure recovery: exceptions

• Test case selection
� Expected cases

• key found
• key not found

� Extreme cases
• empty array
• singleton array
• large array

� “Sub-unit” testing
• ordering relation over domain (…)

� Non-functional testing
• Performance measurement
• Expectation: algorithmic analysis
• Broken code: can yield a linear-time implementation vs. log-time

– E.g., 1m elements: 20 steps vs. 1,000,000 steps

• Coverage analysis
� Statement, branch, path coverage
� Data coverage

• Static analysis and inspection
� Initialization; array bounds; arithmetic exceptions; coding style

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

37

73
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we know when we’re done?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

74
17-654 Spring 2007 –Aldrich © 2007

When are you done testing?

38

75
17-654 Spring 2007 –Aldrich © 2007

When are you done testing?

• Coverage criterion
� Must reach X% coverage
• Legal requirement to have 100% coverage for avionics software
• Drawback: focus on 100% coverage can distort the software so as to avoid any
unreachable code

• Can look at historical data
� How many bugs are remaining, based on matching current project to past
experience?

� Key question: is the historical data applicable to a new project?

• Can use statistical models
� Test on a realistic distribution of inputs, measure % of failed tests
• Ship product when quality threshold is reached

� Only as good as your characterization of the input
• Usually, there’s no good way to characterize this
• Exception: stable systems for which you have empirical data (telephones)
• Exception: good mathematical model (avionics)

• Rule of thumb: when error detection rate drops
� Implies diminishing returns for testing investment

76
17-654 Spring 2007 –Aldrich © 2007

When are you done testing?

• Mutation testing
� Perturb code slightly in order to assess sensitivity
� Focus on low-level design decisions
• Examples:
• Change “<“ to “>”
• Change “0” to “1”
• Change “≤“ to “<“
• Change “argv” to “argx”
• Change “a.append(b)” to “b.append(a)”

• Assess effectiveness of test suite
� How many seeded defects are found?
• coverage metric

� Principle: % of mutants not found ~ % of errors not found
• Is this really true?
• Depends on how well mutants match real errors
• Some evidence of similarity (e.g. off by one errors) but clearly
imperfect

39

77
17-654 Spring 2007 –Aldrich © 2007

When are you done inspecting?

• Capture/Recapture assessment
� Most applicable for assessing inspections
� Measure overlap in defects found by different inspectors
� Use overlap to estimate number of defects not found

• Example
� Inspector A finds n1=10 defects
� Inspector B finds n2=8 defects
� m = 5 defects found by both A and B
� N is the (unknown) number of defects in the software

• Lincoln-Petersen analysis [source: Wikipedia]
� Consider just the 10 (total) defects found by A
� Inspector B found 5 of these 10 defects
� Therefore the probability that inspector B finds a given defect is 5/10 or 50%
� So, inspector B should have found 50% of the N defects in the software, so

N = n1 * n2 / m = 10 * 8 / 5 = 20 defects

• Assumptions
� All defects are equally easy to find
� All inspectors are equally effective at finding defects
� Are these realistic?

78
17-654 Spring 2007 –Aldrich © 2007

When are you done testing?

• Most common
� Run out of time or money

• Ultimately a judgment call
� Resources available
� Schedule pressures
� Available estimates of quality

40

79
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we know when we’re done?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

80
17-654 Spring 2007 –Aldrich © 2007

5a. Practices for testability

1. Document interfaces
� Write down explicit “rules of the road” at interfaces, APIs, etc

• Design by contract
� Specify a contract between service client and its

implementation
• System works if both parties fulfill their
contract
• Use pre- and post-conditions, etc

• Testing
� Verify pre- and post-conditions during
execution
• Important Limitation
• Not all logical formulas can be
evaluated directly (forall x in S…)

� Assign responsibility based on
contract expectations

� Executions become a set of unit tests

41

81
17-654 Spring 2007 –Aldrich © 2007

5a. Integration/System Testing

2. Do incremental integration testing
� Test several modules together
� Still need scaffolding for modules not under test

• Avoid “big bang” integrations
� Going directly from unit tests to whole program tests
� Likely to have many big issues
� Hard to identify which component causes each

• Test interactions between modules
� Ultimately leads to end-to-end system test

• Used focused tests
� Set up subsystem for test
� Test specific subsystem- or
system-level features
• no “random input” sequence

� Verify expected output

82
17-654 Spring 2007 –Aldrich © 2007

5a. Frequent (Nightly) Builds

3. Build a release of a large project every night
� Catches integration problems where a change “breaks the build”
• Breaking the build is a BIG deal—may result in midnight calls to the
responsible engineer

� Use test automation
• Upfront cost, amortized benefit
• Not all tests are easily automated –
manually code the others

• Run simplified “smoke test” on
build
� Tests basic functionality and
stability

� Often: run by programmers
before check-in

� Provides rough guidance prior
to full integration testing

42

83
17-654 Spring 2007 –Aldrich © 2007

Practices –Regressions

4. Use regression tests
� Regression tests: run every time the system changes

• Goal: catch new bugs introduced by code changes
� Check to ensure fixed bugs stay fixed
• New bug fixes often introduce new issues/bugs

� Incrementally add tests for new functionality

84
17-654 Spring 2007 –Aldrich © 2007

Practices – Acceptance, Release, Integrity Tests

5. Acceptance tests (by customer)
� Tests used by customer to evaluate quality of a system
� Typically subject to up-front negotiation

6. Release Test (by provider, vendor)
� Test release CD
• Before manufacturing!

� Includes configuration tests, virus scan, etc
� Carry out entire install-and-run use case

7. Integrity Test (by vendor or third party)
� Independent evaluation before release
� Validate quality-related claims
� Anticipate product reviews, consumer complaints
� Not really focused on bug-finding

43

85
17-654 Spring 2007 –Aldrich © 2007

Practices: Reporting Defects

8. Develop good defect reporting practices

• Reproducible defects
� Easier to find and fix
� Easier to validate
• Built-in regression test

� Increased confidence

• Simple and general
� More value doing the fix
� Helps root-cause analysis

• Non-antagonistic
� State the problem
� Don't blame

86
17-654 Spring 2007 –Aldrich © 2007

Practices: Social Issues

9. Respect social issues of testing

• There are differences between developer and tester culture

• Acknowledge that testers often deliver bad news

• Avoid using defects in performance evaluations
� Is the defect real?
� Bad will within team

• Work hard to detect defects
before integration testing
� Easier to narrow scope and
responsibility

� Less adversarial

• Issues vs. defects

44

87
17-654 Spring 2007 –Aldrich © 2007

Practices: Root cause analysis

10. How can defect analysis help prevent later defects?

• Identify the “root causes” of frequent defect types, locations
� Requirements and specifications?
� Architecture? Design? Coding style? Inspection?

• Try to find all the paths to a problem
� If one path is common, defect is higher priority
� Each path provides more info on likely cause

• Try to find related bugs
� Helps identify underlying root cause of the defect
� Can use to get simpler path to problem
• This can mean easier to fix

• Identify the most serious consequences of a defect

88
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we know when we’re done?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

45

89
17-654 Spring 2007 –Aldrich © 2007

5b. Testing and Lifecycle Issues

1. Testing issues should be addressed at every lifecycle phase

• Initial negotiation
� Acceptance evaluation: evidence and evaluation
� Extent and nature of specifications

• Requirements
� Opportunities for early validation
� Opportunities for specification-level testing and analysis
� Which requirements are testable: functional and non-functional

• Design
� Design inspection and analysis
� Designing for testability
• Interface definitions to facilitate unit testing

• Follow both top-down and bottom-up unit testing approaches
� Top-down testing
• Test full system with stubs (for undeveloped code).
• Tests design (structural architecture), when it exists.

� Bottom-up testing
• Units � Integrated modules � system

90
17-654 Spring 2007 –Aldrich © 2007

Lifecycle issues

2. Favor unit testing over integration and system testing

• Unit tests find defects earlier
� Earlier means less cost and less risk

� During design, make API specifications specific
• Missing or inconsistent interface (API) specifications
• Missing representation invariants for key data structures

• What are the unstated assumptions?
• Null refs ok?
• Pass out this exception ok?
• Integrity check responsibility?
• Thread creation ok?

• Over-reliance on system testing can be risky
� Possibility for finger pointing within the team
� Difficulty of mapping issues back to responsible developers
� Root cause analysis becomes blame analysis

46

91
17-654 Spring 2007 –Aldrich © 2007

Test Plan

3. Create a QA plan document

• Which quality techniques are used and for what purposes

• Overall system strategy
� Goals of testing
• Quality targets
• Measurements and measurement goals

� What will be tested/what will not
• Don’t forget quality attributes!

� Schedule and priorities for testing
• Based on hazards, costs, risks, etc.

� Organization and roles: division of
labor and expertise

� Criteria for completeness and
deliverables

• Make decisions regarding when to unit test
� There are differing views
• CleanRoom: Defer testing. Use separate test team
• Agile: As early as possible, even before code, integrate into team

�

92
17-654 Spring 2007 –Aldrich © 2007

Test Strategy Statement

• Examples:
� We will release the product to friendly users after a brief
internal review to find any truly glaring problems. The friendly
users will put the product into service and tell us about any
changes they’d like us to make.

� We will define use cases in the form of sequences of user
interactions with the product that represent … the ways we
expect normal people to use the product. We will augment that
with stress testing and abnormal use testing (invalid data and
error conditions). Our top priority is finding fundamental
deviations from specified behavior, but we will also use
exploratory testing to identify ways in which this program might
violate user expectations.

� We will perform parallel exploratory testing and automated
regression test development and execution. The exploratory
testing will focus on validating basic functions (capability
testing) to provide an early warning system for major functional
failures. We will also pursue high-volume random testing where
possible in the code.

[adapted from Kaner, Bach, Pettichord, Lessons Learned in Software Testing]

47

93
17-654 Spring 2007 –Aldrich © 2007

Why Produce a Test Plan?

4. Ensure the test plan addresses the needs of stakeholders

• Customer: may be a required product
� Customer requirements for operations and support
� Examples
• Government systems integration
• Safety-critical certification: avionics, health devices, etc.

• A separate test organization may implement part of the plan
� “IV&V” – Independent verification and validation

• May benefit development team
� Set priorities
• Use planning process to identify areas of hazard, risk, cost

• Additional benefits – the plan is a team product
� Test quality
• Improve coverage via list of features and quality attributes
• Analysis of program (e.g. boundary values)
• Avoid repetition and check completeness

� Communication
• Get feedback on strategy
• Agree on cost, quality with management

� Organization
• Division of labor
• Measurement of progress

94
17-654 Spring 2007 –Aldrich © 2007

Defect Tracking

5. Track defects and issues

• Issue: Bug, feature request, or query
� May not know which of these until analysis is done,
so track in the same database (Issuezilla)

• Provides a basis for measurement
� Defects reported: which lifecycle phase
� Defects repaired: time lag, difficulty
� Defect categorization
� Root cause analysis (more difficult!)

• Provides a basis for division of effort
� Track diagnosis and repair
� Assign roles, track team involvement

• Facilitates communication
� Organized record for each issue
� Ensures problems are not forgotten

• Provides some accountability
� Can identify and fix problems in process
• Not enough detail in test reports
• Not rapid enough response to bug reports

� Should not be used for HR evaluation

48

95
17-654 Spring 2007 –Aldrich © 2007

Testing – The Big Questions

1. What is testing?
� And why do we test?

2. What do we test?
� Levels of structure: unit, integration, system…

3. How do we select a set of good tests?
� Value-driven testing
� Functional (black-box) testing
� Structural (white-box) testing

4. How do we know when we’re done?
� Coverage, Mutation, Capture/Recapture…

5. Practices for testability
� What are known best test practices?
� How does testing integrate into lifecycle and metrics?

6. What are the limits of testing?
• What are complementary approaches?
• Inspections
• Static and dynamic analysis

96
17-654 Spring 2007 –Aldrich © 2007

6. What are the limits of testing?

• What we can test
� Attributes that can be directly evaluated externally

• Examples
• Functional properties: result values, GUI manifestations, etc.

� Attributes relating to resource use
• Many well-distributed performance properties
• Storage use

• What is difficult to test?
� Attributes that cannot easily be measured externally

• Is a design evolvable? Design Structure Matrices
• Is a design secure? Secure Development Lifecycle
• Is a design technically sound? Alloy; see also Models
• Does the code conform to a design? ArchJava; Reflexion models; Framework usage
• Where are the performance bottlenecks? Performance analysis
• Does the design meet the user’s needs? Usability analysis

� Attributes for which tests are nondeterministic
• Real time constraints Rate monotonic scheduling
• Race conditions Analysis of locking

� Attributes relating to the absence of a property
• Absence of security exploits Microsoft’s Standard Annotation Language
• Absence of memory leaks Cyclone, Purify
• Absence of functional errors Hoare Logic
• Absence of non-termination Termination analysis

49

97
17-654 Spring 2007 –Aldrich © 2007

Assurance beyond Testing and Inspection

• Design analysis: check correctness early
� Design Structure Matrices – evolvability analysis
� Security Development Lifecycle – architectural analysis for security
� Alloy – systematically exploring a model of a design

• Static analysis: provable correctness
� Reflexion models, ArchJava – conformance to design
� Fluid – concurrency analysis for race conditions
� Metal, Fugue – API usage analysis
� Type systems – eliminate mechanical errors
� Standard Annotation Language – eliminate buffer overflows
� Cyclone – memory usage

• Dynamic analysis: run time properties
� Performance analysis
� Purify – memory usage
� Eraser – concurrency analysis for race conditions
� Test generation and selection – lower cost, extend range of testing

• Manual analysis: human verification
� Hoare Logic – verification of functional correctness
� Real-time scheduling

