
1

1

Analysis for Safe Concurrency

Reading: Assuring and Evolving Concurrent
Programs: Annotations and Policy

17-654/17-754: Analysis of Software Artifacts

Jonathan Aldrich

3 April 2007 Analysis of Software Artifacts:
Concurrency

2

public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter ;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Consider setFilter() in isolation

[Source: Aaron
Greenhouse]

2

3 April 2007 Analysis of Software Artifacts:
Concurrency

3

public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& ! filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Consider log() in isolation

[Source: Aaron
Greenhouse]

3 April 2007 Analysis of Software Artifacts:
Concurrency

4

/** ... All methods on Logger are multi-thread safe . */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter ;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& ! filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Consider class Logger in it’s entirety!

[Source: Aaron
Greenhouse]

3

3 April 2007 Analysis of Software Artifacts:
Concurrency

5

/** ... All methods on Logger are multi-thread safe . */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter)…{
if (!anonymous) manager.checkAccess();
filter = newFilter ;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& ! filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Class Logger has a race condition.

2

1

3

[Source: Aaron
Greenhouse]

3 April 2007 Analysis of Software Artifacts:
Concurrency

6

/** ... All methods on Logger are multi-thread safe . */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public synchronized void setFilter(Filter newFilter)…{
if (!anonymous) manager.checkAccess();
filter = newFilter ;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& ! filter.isLoggable(record)) return;

} ...
} ...

}

Example: java.util.logging.Logger

Correction: synchronize setFilter()

[Source: Aaron
Greenhouse]

4

3 April 2007 Analysis of Software Artifacts:
Concurrency

7

Example: Summary 1

Problem: Race condition in class Logger

• Race condition defined:
(From Savage et al., Eraser: A Dynamic Data Race Detector
for Multithreaded Programs)

• Two threads access the same variable
• At least one access is a write
• No explicit mechanism prevents the

accesses from being simultaneous

3 April 2007 Analysis of Software Artifacts:
Concurrency

8

Example: Summary 2

Problem: Race condition in class Logger

• Non-local error
• Had to inspect whole class

• Bad code invalidates good code
• Could have to inspect all clients of class

• Hard to test
• Problem occurs non-deterministically

• Depends on how threads interleave

5

3 April 2007 Analysis of Software Artifacts:
Concurrency

9

Example: Summary 3

Problem: Race condition in class Logger

• Not all race conditions result in errors
• Error results when invariant is violated

• Logger invariant
• filter is not null at call following null test

• Race-related error
• race between write and dereference of filter
• if the write wins the race, filter is null at the call

3 April 2007 Analysis of Software Artifacts:
Concurrency

10

Example: Summary 4

Problem: Race condition in class Logger

• Need to know design intent
• Should instances be used across threads?
• If so, how should access be coordinated?

• Assumed log was correct: synchronize on this

• Could be caller’s responsibility to acquire lock
⇒⇒⇒⇒ log is incorrect
⇒⇒⇒⇒ Need to check call sites of log and setFilter

6

3 April 2007 Analysis of Software Artifacts:
Concurrency

11

Software Disasters: Therac-25
• Delivered radiation treatment
• 2 modes

• Electron: low power electrons
• X-Ray: high power electrons

converted to x-rays with
sheild

• Race condition
• Operator specifies x-ray,

then quickly corrects to
electron mode

• Dosage process doesn’t see
the update, delivers x-ray
dose

• Mode process sees update,
removes shield

• Consequences
• 3 deaths, 3 serious injuries

from radiation overdose

from http://www.netcomp.monash.edu.au/cpe9001/assets/readings/HumanErrorTalk6.gif

source: Leveson and Turner, An Investigation of the Therac-25 Accidents, IEEE Computer, Vol. 26, No. 7, July 1993.

3 April 2007 Analysis of Software Artifacts:
Concurrency

12

Thought Experiment

How would you make sure your code avoids race
conditions?

• Keep some data local to a single thread
• Inaccessible to other threads
• e.g. local variables, Java AWT & Swing, thread state

• Protect shared data with locks
• Acquire lock before accessing data, release afterwards
• e.g. Java synchronized, OS kernel locks

• Forbid context switches/interrupts in critical sections of code
• Ensures atomic update to shared state
• e.g. many embedded systems, simple single processor OSs

• Analyze all possible thread interleavings
• Ensure invariants cannot be violated in any execution
• Does not scale beyond smallest examples

• Future: transactional memory

7

3 April 2007 Analysis of Software Artifacts:
Concurrency

13

Thread Locality in the Java AWT
• Event thread

• Started by the AWT library
• Invokes user callbacks

• e.g. to draw a window

• Rules
• Can create a component from any thread
• Once component is initialized, can only access from Event thread
• To access from another thread, register a callback function to be

invoked in the Event thread
• Many other GUI libraries have similar rules

• Microsoft Windows Presentation Foundation: one thread per window
• Why (e.g. vs. locks)?

• Simple: no need to track relationship between lock and state
• Predictable: less concurrency in GUI
• Efficient: acquiring locks is expensive

• Why not?
• Less concurrency available

3 April 2007 Analysis of Software Artifacts:
Concurrency

14

Thread Locality: Variations

• Read-only data structures
• May be freely shared between threads
• No changes to data allowed

• Ownership transfer
• Initialize a data structure in thread 1
• Transfer ownership of data to thread 2

• Now thread 2 may access the data, but thread 1
may not

• Transfer may be repeated
• Note that transfer usually requires

synchronization on some other variable

8

3 April 2007 Analysis of Software Artifacts:
Concurrency

15

Lock-based Concurrency

• Associate a lock with each shared variable
• Acquire the lock before all accesses
• Group all updates necessary to maintain data

invariant
• Hold all locks until update is complete

• Granularity
• Fine-grained locks allow more concurrency

• Can be tricky if different parts of a data structure are
protected by different—perhaps dynamically created—
locks

• Coarse-grained locks have lower overhead

3 April 2007 Analysis of Software Artifacts:
Concurrency

16

Deadlock
• Bank transfer

• Debit one account and credit
another

• (broken) protocol: lock debit
account, then credit account

• Deadlock scenario
• Thread 1 acquires lock A
• Thread 2 acquires lock B
• Thread 2 attempts to acquire

lock A and waits
• Thread 1 attempts to acquire

lock B and waits
• Neither thread 1 nor thread 2

may proceed

• Deadlock definition
• A set of threads that forms a

cycle, such that each thread
is waiting to acquire a lock
held by the next thread

thread1() {
lock(A); // protects X
lock(B); // protects Y
debit(X);
credit(Y);
unlock(B);
unlock(A);

}

thread2() {
lock(B);
lock(A);
debit(Y);
credit(X);
unlock(A);
unlock(B);

}

9

3 April 2007 Analysis of Software Artifacts:
Concurrency

17

Dealing with Deadlock

• Lock ordering
• Always acquire locks in a fixed order

• Cycles impossible—both thread 1 and thread 2 will
attempt to acquire A before B

• Release locks in the opposite order

• Detect cycles as they form
• Runtime system checks for cycles when waiting to

acquire
• Expensive in practice, but simplifies development

• Force one thread in cycle to give up its lock
• Typically the last thread, or the lowest priority

3 April 2007 Analysis of Software Artifacts:
Concurrency

18

Disabling interrupts/context switches

• Disable interrupts for critical sections of code
• Should be short, so that interrupts aren’t delayed too long
• Must be long enough to update shared data consistently
• Common in single-processor embedded systems

• Why?
• Cheap, simple, predictable

• Why not?
• Does not support true multiprocessor concurrency
• Suspending interrupts can mean missing real time I/O

deadlines
• Like having a global lock: forbids concurrent access even to

different data structures

10

3 April 2007 Analysis of Software Artifacts:
Concurrency

19

Analyzing All Possible Interleavings

• Race condition defined:
(From Savage et al., Eraser: A Dynamic Data Race Detector
for Multithreaded Programs)

• Two threads access the same variable
• At least one access is a write
• No explicit mechanism prevents the

accesses from being simultaneous

3 April 2007 Analysis of Software Artifacts:
Concurrency

20

Analyzing All Possible Interleavings
thread1() {

read x;
}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK

Thread 1 Thread 2

read x

lock

write x

unlock

11

3 April 2007 Analysis of Software Artifacts:
Concurrency

21

Analyzing All Possible Interleavings
thread1() {

read x;
}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK

Thread 1 Thread 2

read x

lock

write x

unlock

3 April 2007 Analysis of Software Artifacts:
Concurrency

22

Analyzing All Possible Interleavings
thread1() {

read x;
}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK
Interleaving 3: Race

Thread 1 Thread 2

read x

lock

write x

unlock

12

3 April 2007 Analysis of Software Artifacts:
Concurrency

23

Analyzing All Possible Interleavings
thread1() {

read x;
}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK
Interleaving 3: Race
Interleaving 4: Race

Thread 1 Thread 2

read x

lock

write x

unlock

3 April 2007 Analysis of Software Artifacts:
Concurrency

24

Analyzing All Possible Interleavings

• What
• No race conditions
• More important: data invariants always hold at appropriate

program points

• Why?
• You are implementing a new synchronization primitive
• Building on top of other synchronization mechanisms is too

expensive

• Why not?
• Does not scale to large bodies of code
• Complex and error prone
• May not be portable, depending on memory model
• No guarantee the result will be faster!

13

3 April 2007 Analysis of Software Artifacts:
Concurrency

25

Transactional Memory

• Group update operations into a transaction
• Goal: invariant holds after operations are complete

• Run-time system ensures update is atomic
• i.e. updates are consistent with running complete

transactions in a linear order

• Implementation
• Track reads and writes to memory
• At end, ensure no other process has overwritten

cells that were read or written
• Commit writes if no interference
• Abort writes (with no effect) if interference

observed

3 April 2007 Analysis of Software Artifacts:
Concurrency

26

Transactional Memory

• Why?
• Simpler model than others, therefore much easier

to get right
• No problem with deadlock
• Allows more concurrency
• Supports reuse of concurrent code

• Why not?
• Overhead may be high
• Still experimental

• My view: inevitable as concurrency becomes
more common

14

3 April 2007 Analysis of Software Artifacts:
Concurrency

27

Fluid: Tool Support for Safe Concurrency

3 April 2007 Analysis of Software Artifacts:
Concurrency

28

Example: Summary 4

Problem: Race condition in class Logger

• Need to know design intent
• Should instances be used across threads?
• If so, how should access be coordinated?

• Assumed log was correct: synchronize on this

• Could be caller’s responsibility to acquire lock
⇒⇒⇒⇒ log is incorrect
⇒⇒⇒⇒ Need to check call sites of log and setFilter

[Source: Aaron
Greenhouse]

15

3 April 2007 Analysis of Software Artifacts:
Concurrency

29

Models are Missing
• Programmer design intent is missing

• Not explicit in Java, C, C++, etc
• What lock protects this object?

• “This lock protects that state”
• What is the actual extent of shared state of this object?

• “This object is ‘part of’ that object”

• Adoptability
• Programmers: “Too difficult to express this stuff.”
• Annotations in tools like Fluid: Minimal effort — concise expression

• Capture what programmers are already thinking about
• No full specification

• Incrementality
• Programmers: “I’m too busy; maybe after the deadline.”
• Tool design (e.g. Fluid): Payoffs early and often

• Direct programmer utility — negative marginal cost
• Increments of payoff for increments of effort

[Source: Aaron
Greenhouse]

3 April 2007 Analysis of Software Artifacts:
Concurrency

30

Capturing Design Intent

• What data is shared by multiple threads?

• What locks are used to protect it?
• Annotate class: @lock FL is this protects

filter

Whose responsibility is it to acquire the lock?
Annotate method: @requiresLock FL

Is this delegate object owned by its referring
object?
Annotate field: @aggregate … into Instance

[Source: Aaron
Greenhouse]

16

3 April 2007 Analysis of Software Artifacts:
Concurrency

31

Reporting Code–Model Consistency

• Tool analyzes consistency
• No annotations ⇒ no assurance
• Identify likely model sites

• Three classes of results
Code–model consistency

Code–model inconsistency

Informative — Request for annotation

[Source: Aaron
Greenhouse]

3 April 2007 Analysis of Software Artifacts:
Concurrency

32

Fluid Demonstration: Locks

17

3 April 2007 Analysis of Software Artifacts:
Concurrency

33

Incremental Assurance

Payoffs early and often to reward use
• Reassure after every save

• Maintain model–code consistency
• Find errors as soon as they are introduced

• Focus on interesting code
• Heavily annotate critical code
• Revisit other code when it becomes critical

• Doesn’t require full annotation to be useful

[Source: Aaron
Greenhouse]

3 April 2007 Analysis of Software Artifacts:
Concurrency

34

Fluid Demonstration: Aliasing,
Inheritance, and Constructors

18

3 April 2007 Analysis of Software Artifacts:
Concurrency

35

Analysis Issues: Aliasing
• Other pointers can invalidate reasoning

• @singlethreaded – can other threads access through an
alias?

• @aggregate … into Instance – can the field be accessed
though an alias that is not protected by the lock?

• Similar issues in other analyses, e.g. Typestate

FileInputStream a = …
FileInputStream b = …
a.close() // what if a and b alias?
b.read(…) // may read a closed file

• Solution from Fugue (Microsoft Research)
• @NotAliased annotation indicates that b has no aliases
• Therefore closing a does not affect b
• Requires alias analysis to verify
• Can sometimes be inferred by analysis

• e.g. see Fink et al., ISSTA ’06

3 April 2007 Analysis of Software Artifacts:
Concurrency

36

Capturing Design Intent

• What data is shared by multiple threads?
• What locks are used to protect it?

• Annotate class: @lock FL is this protects filter

• Is this delegate object owned by its referring object?
• Annotate field: @aggregate … into Instance

• Can this object be accessed by multiple threads?
• Annotate method: @singleThreaded

• Can this argument escape to the heap?
• Annotate method: @borrowed this

[Source: Aaron
Greenhouse]

19

3 April 2007 Analysis of Software Artifacts:
Concurrency

37

Analysis Issues: Constructors,
Inheritance

• Constructors
• Often special cases for assurance
• Fluid: can’t protect with “this” lock

• But OK since usually not multithreaded yet
• Others

• Invariants may not hold until end of constructor

• Subtyping
• Subclass must inherit specification of superclass
• Example: @singlethreaded for Formatter
• Sometimes subclass extends specification

• e.g. to be multi-threaded safe
• requires care in inheriting or overriding superclass methods

• Inheritance
• Representation of superclass may have different invariants

than subclass
• super calls must obey superclass specs

• e.g. call to Formatter constructor

3 April 2007 Analysis of Software Artifacts:
Concurrency

38

Fluid Demonstration: Cutpoints, Aliasing

20

3 April 2007 Analysis of Software Artifacts:
Concurrency

39

How Incrementality Works 1

• How can one provide
incremental benefit with
mutual dependencies?

Call Graph of Program

[Source: Aaron
Greenhouse]

3 April 2007 Analysis of Software Artifacts:
Concurrency

40

assured region

How Incrementality Works 2

• How can one provide
incremental benefit with
mutual dependencies?

• Cut points
• Method annotations

partition call graph
• Can assure property

of a subgraph
• Assurance is

contingent on
accuracy of trusted cut
point method
annotations

Call Graph of Program

cut point

[Source: Aaron
Greenhouse]

21

3 April 2007 Analysis of Software Artifacts:
Concurrency

41

Cutpoint Example: @requiresLock

• Analysis normally assumes a method acquires
and releases all the locks it needs.
• Prevents caller’s correctness from depending on

internals of called method.

• Method can require the caller to already hold
a certain lock: @requiresLock FilterLock
• Analysis of method gets to assume the lock is

held.
• Doesn’t need to know about caller(s).

• Analysis of caller checks for lock acquisition.
• Still ignores internals of called method.

[Source: Aaron
Greenhouse]

3 April 2007 Analysis of Software Artifacts:
Concurrency

42

Capturing Design Intent

• What data is shared by multiple threads?

• What locks are used to protect it?
• Annotate class: @lock FL is this protects

filter

• Is this delegate object owned by its referring
object?
• Annotate field: @aggregate … into Instance

• Whose responsibility is it to acquire the lock?
• Annotate method: @requiresLock FL

[Source: Aaron
Greenhouse]

22

3 April 2007 Analysis of Software Artifacts:
Concurrency

43

Concurrency: Summary

• Many ways to make concurrency safe
• Single-threaded data
• Locks
• Disabled interrupts
• Analysis of interleavings (simple settings)
• Transactions (future)

• Design intent useful
• Document assumptions for team
• Aids in manual analysis
• Enables (eventual) automated analysis

3 April 2007 Analysis of Software Artifacts:
Concurrency

44

Questions?

