Dataflow Analysis

17-654/17-754
Analysis of Software Artifacts

Jonathan Aldrich

Analysis of Software Artifacts -
Spring 2006

Overview: Analyses We've Seen g

« AST walker analyses
* e.g. assignment inside an if statement

* Very approximate, very local
* Misses case where accidental assignment is
done outside an if

* Hoare logic
» Useful for proving correctness
* Requires a lot of work (even for ESC/Java)

* Automated tool is unsound
* So is manual proof, without a proof checker

Analysis of Software Artifacts - 2
Spring 2006

Motivation: Dataflow Analysis g

» Catch interesting errors
* Non-local: x is null, x is written to y, y is
dereferenced

e Optimize code
* Reduce run time, memory usage...

* Soundness required
» Safety-critical domain
* Assure lack of certain errors
* Cannot optimize unless it is proven safe
» Correctness comes before perrormance

e Automation required
* Dramatically decreases cost
* Makes cost/benefit worthwhile for far more
purposes

Analysis of Software Artifacts - 3
Spring 2006

Dataflow analysis g

» Tracks value flow through program

* Can distinguish order of operations
* Did you read the file after you closed it?
* Does this null value flow to that dereference?
» Differs from AST walker
* Walker simply collects information or checks patterns
e Tracking flow allows more interesting properties

. Abstracts values

Chooses abstraction particular to property

Is a variable null?

Is a file open or closed?

Could a variable be 0?

Where did this value come from?

* More specialized than Hoare logic
* Hoare logic allows any property to be expressed
» Specialization allows automation and soundness

Analysis of Software Artifacts - 4
Spring 2006

Zero Analysis g

* Could variable x be 0?
* Useful to know if you have an expression y/x
* In C, useful for null pointer analysis

* Program semantics
* /7 maps every variable to an integer

e Semantic abstraction

* o maps every variable to non zero (NZ), zero(Z),
or maybe zero (MZ)

* Abstraction function for integers a,:
. 02,50; = Z
* ay(n=NzZ forallnz0

* We may not know if a value is zero or not
* Analysis is always an approximation
* Need MZ option, too

Zero Analysis Example g
=]
X := 10; o0 =[x~ a5,(10)]
yi=X
z:=0;
while y > -1 do
x:=xly;
y:=y-1;
Z:=5;

Analysis of Software Artifacts - 6
Spring 2006

Zero Analysis Example

B

X :=10;

y=Xx

z:=0;

while y > -1 do
x:=xly;
y = y-1;
z:=5;

o=[]
o =[x~NZ]
0 =[x~>NZ,y~0(x)]

Analysis of Software Artifacts - 7

Spring 2006

Zero Analysis Example

B

X :=10;

y=Xx

z:=0;

while y > -1 do
x:=xly;
y = y-1;
z:=5;

=]

o =[x~NZ]

o =[x~>NZ,y~»NZ]

0 =[x>NZ,y-»NZ,z~ a,,(0)]

Analysis of Software Artifacts - 8
Spring 2006

Zero Analysis Example g

=]
x = 10; o =[x~NZ]
y = X; o =[x~»NZ,y~»NZ]
z:=0; o =[x~»NZ,y»NZ,z~Z]
while y > -1 do 0 =[x~»NZ,y»NZ,z~Z]
x:=xly; 0 =[x~»NZ,y»NZ,z~Z]
y =y-1; o =[x~»NZ,y-»MZ,z~Z]
z:=5; o =[x~»NZ,y-»MZ,z~NZ]
Zero Analysis Example g
=]
x = 10; o =[x~NZ]
Yy =X; o =[x~»NZ,y~»NZ]
z:=0; 0 =[x~»NZ,y»NZ,z~Z]
while y > -1 do o =[x~»NZ,y-»MZ,z~MZ]
x:=xly; 0 =[x~»NZ,y»NZ,z~Z]
y =y-1; o =[x~»NZ,y-»MZ,z~Z]

z:=5; o =[x~»NZ,y-»MZ,z~NZ]

Analysis of Software Artifacts - 10
Spring 2006

Zero Analysis Example g

=]
x = 10; o =[x~NZ]
y = X; o =[x~>NZ,y~»NZ]
z:=0; o =[x~»NZ,y»NZ,z~Z]
while y > -1 do o =[x~»NZ,y-»MZ,z~MZ]
x:=xly; o =[x~»NZ,y-»MZ,z~MZ]
y =y-1; o =[x~»NZ,y-»MZ,z~Z]
z:=5; o =[x~»NZ,y-»MZ,z~NZ]
Zero Analysis Example g
=]
x = 10; o =[x~NZ]
Yy =X; o =[x~>NZ,y~»NZ]
z:=0; o=[x~»NZ,y»NZ,z~Z]
while y > -1 do o =[x~»NZ,y-»MZ,z~MZ]
x:=xly; o =[x~»NZ,y-»MZ,z~MZ]
y =vy-1; o =[x~»NZ,y-»MZ,z~MZ]
z:=5; o =[x~»NZ,y-»MZ,z~NZ]

Nothing more happens!

Analysis of Software Artifacts - 12
Spring 2006

Zero Analysis Termination g

» The analysis values will not change, no matter how

many times we execute the loop
Proof: our analysis is deterministic

* We run through the loop with the current analysis values,
none of them change

* Therefore, no matter how many times we run the loop, the
results will remain the same

* Therefore, we have computed the dataflow analysis results
for any number of loop iterations

. Why does this work
If we simulate the loop, the data values could (in principle)
keep changing indefinitely
* There are an infinite number of data values possible
* Not true for 32-bit integers, but might as well be true
Counting to 232 is slow, even on today’s processors
» Dataflow analysis only tracks 2 possibilities!
* So once we've explored them all, nothing more will change
* This is the secret of abstraction

* We will make this argument more precise later

Analysis of Software Artifacts - 13
Spring 2006

Using Zero Analysis g

* Visit each division in the program

* Get the results of zero analysis for the
divisor

 If the results are definitely zero, report
an error

 If the results are possibly zero, report a
warning

Analysis of Software Artifacts - 14
Spring 2006

Defining Dataflow Analyses g

e Lattice
» Describes program data abstractly
* Abstract equivalent of environment

* Abstraction function
* Maps concrete environment to lattice element

* Flow functions
» Describes how abstract data changes
* Abstract equivalent of expression semantics

* Control flow graph
» Determines how abstract data propagates from
statement to statement
» Abstract equivalent of statement semantics

Analysis of Software Artifacts - 15
Spring 2006

Lattice g

less

. A lattice is a tuple (L, E, U, 1, T) T=MZ | ccice

L is a set of abstract elements VRN

« Cisa partlalll orderon L
e Means at least as precise as

* Uis the least upper bound of two \ /
elements i more
* Must exist for every two elements in L precise
* Used to merge two abstract values

* 1 (bottom) is the least element of L
* Means we haven't yet analyzed this yet
* Wil become clear later

* T (top) is the greatest element of L
* Means we don’t know anything

* L may be infinite
» Typically should have finite height
* All paths from L to T should be finite
* We'll see why later

Analysis of Software Artifacts - 16
Spring 2006

Is this a lattice? g

* Alatticeisatuple (L, E, U, L, T) T
* L is aset of abstract elements \
* LCisa partial order on L 1
* Uuis the least upper bound of two
elements

* must exist for every two elements in L
* 1 (bottom) is the least element of L
« T (top) is the greatest element of L

* Yes!

Analysis of Software Artifacts - 17
Spring 2006

Is this a lattice? g

 Alatticeisatuple (L, E, U, L, T) T
* L is aset of abstract elements / \ \
* LCisa partial order on L a b e
- U is the least upper bound of two | | |

elements c 1 f
e must exist for every two elements in L

* 1 (bottom) is the least element of L

* T (top) is the greatest element of L

* No!

* No bottom element
e 1 isnotleast in the lattice order

e Itis mis-named

Analysis of Software Artifacts - 18
Spring 2006

Is this a lattice? g

* Alatticeisatuple (L, E, U, L, T)
* L is aset of abstract elements / \ \
* LCisa partial order on L
- U is the least upper bound of two | >< | \
elements

* must exist for every two elements in L \ ‘ /
* 1 (bottom) is the least element of L

« T (top) is the greatest element of L

Analysis of Software Artifacts - 19
Spring 2006

Definition: Least Upper Bounds g

e XUy=zIiff
e zis an upper bound of x and y
* XEzandyEz
e zisthe least such bound
 [wlL suchthatxEwandy E wwe have zE w

» Also called a join
 Not a lattice / \ \
e Whatiscud?
 a,b,and T are upper bounds | >< | \
* Assume E is transitive

* None is least upper bound \\/

Analysis of Software Artifacts - 20
Spring 2006

Is this a lattice? g

* Alatticeisatuple (L, E, U, 1, T) T
* L is aset of abstract elements / \ \

* LCisa partial order on L a b e
* Uuis the least upper bound of two \ >< >< \
elements C d f

* must exist for every two elements in L \ ‘ /
* 1 (bottom) is the least element of L 1
« T (top) is the greatest element of L
* Yes!

Analysis of Software Artifacts - 21
Spring 2006

Zero Analysis Lattice g

* Integer zero lattice
e L,={L 2 NZ MZ} T=MZ
« 1CZ 1ENZ NZEMZ ZEMZ PN
. dlllc_; Mé hold_s py :cranscitivity 7 NZ
e L defined as join 1or &
e XUy=ziff . \ /

z is an upper bound of x and y
* zisthe least such bound
Obeys laws: 1UX =X, TUX=T, XUuXxX=X

Also Z U NZ =MZ

Analysis of Software Artifacts - 22
Spring 2006

11

Zero Analysis Lattice g

* Integer zero lattice

e L,={1,2 NZ, MZ} =Mz

- 1EZ 1ENZ NZCEMZ ZEMZ N
* U defined as join for E Z NZ
e 1=1

.« T=MZ \J_/

* Program lattice is a tuple lattice

L, is the set of all maps from Var to L,

g, E, g, iff OxOVar . g,(X) E, 05(X)

o, U; 0, = { X~ 0,(X) Uy 0,(X) | xOVar }

L={xm~ L, | xOVar}

T={Xxr T, | xOVar } ={x~ MZ | xOVar }

Can produce a tuple lattice from any base lattice
Just define as above

Analysis of Software Artifacts - 23
Spring 2006

Tuple Lattices Visually g

* ForVar={xy}

T=MZ
7 T
{x~Z, y»MZ} {x~»NZ,y-MZ} {x-MZ,y~Z} {x~MZ, y-NZ}

o~

x-MZ, y»1,} {x~Z,y-2Z} {x-Z, y-»NZ}

{x=Z,yo1,} {X>NZ,y-1,} {X-1,, y=Z} {X-1y, y»NZ}

L={X-1,, yoi)}

Analysis of Software Artifacts - 24
Spring 2006

12

One Path in a Tuple Lattice g

T={w-MZ, x-MZ, y»>MZ, z-MZ}

T={w~2Z, X»—)M%, y~MZ, z-MZ}

T={w-Z, x~MZ, y»NZ, z-MZ}

P N P

\/\/‘\

1={w~Z, x>NZ, y»1,,, z~1,}

\ >(| X

L={we 1y, XoNZ, yo iy, 2015}

L{We Ly, Xodg), Yolyy, 201y}

Analysis of Software Artifacts -
Spring 2006

25

Abstraction Function g

* Maps each concrete program state to a
lattice element
* For tuple lattices, the function can be
defined for values and lifted to tuples

 Integer Zero abstraction function ay, :
© az(0)=Z
e ay(n)=NZ forallnz0

« Zero Analysis abstraction function a,, :

© aza(7) = {x > az(n(x)) | xOVar }
« This is just the tuple form of a,,(n)
* Can be done for any tuple lattice

Analysis of Software Artifacts -
Spring 2006

26

13

Control Flow Graph (CFG) g

* Shows order of statement execution
* Determines where data flows

* Decomposes expressions into primitive

operations
* Crystal: One CFG node per “useful” AST node
e constants, variables, binary operations, assignments, if,
while...
* Loops are written out
* Form aloop in the CFG
* Benefit: analysis is defined one operation at a time

Analysis of Software Artifacts - 27
Spring 2006

Intuition for Building a CFG g

e Connect nodes in order of operation
» Defined by language

« Java order of operation

» Expressions, assignment, sequence
» Evaluate subexpressions left to right
» Evaluate node after children (postfix)
* While, If
» Evaluate condition first, then if/while
» if branches to else and then
» while branches to loop body and exit

Analysis of Software Artifacts - 28
Spring 2006

14

Control Flow Graph Example g

while i*2 < 10 do
if X <i+2

thenx :=x+5

elsei:=i+1

Analysis of Software Artifacts - 29
Spring 2006

Flow Functions g

* Compute dataflow information after a
statement from dataflow information before
the statement
* Formally, map a lattice element and a CFG node

to a new lattice element

* Analysis performed on 3-address code
* inspired by 3 addresses in assembly language:
add x,y,z

* Convert complex expressions to 3-address

code

* Each subexpression represented by a temporary
variable

o X+3%y = 1:=3; 1= tYy; =X+,

Analysis of Software Artifacts - 30

Spring 2006

15

While3Addr b

° Ccopy X=Yy

* binary op X=yopz (opO{+-*/..}

e literal X=n

e unary op X=0pYy (op O{-!,++,...})
* label label lab

° jump jump lab

* branch btrue x lab

Zero Analysis Flow Functions g

© fzlo [x:=y]) = [xeay)] o
* fzalo [x:=n]) =if n==0
then [x~Z]o
else [x»NZ]o
* fulo [x:=..])=x-»MZ] o
Could be more precise, e.g.
falo [x=y+2)=

if dy]=Z && dz=Z
then [x~Z]o else [x~»MZ]o

* fza(0; I* any non-assignment */) = o

Analysis of Software Artifacts - 32
Spring 2006

16

Zero Analysis Example

X :=0;
while x > 3 do
X :=X+1

Analysis of Software Artifacts -
Spring 2006

33

Zero Analysis Example

Initial dataflow
g ={x»MZ|xOVar}

Intuition:

We know nothing about
initial variable values. We
could use a precondition if
we had one.

Analysis of Software Artifacts -
Spring 2006

34

17

Zero Analysis Example

o ={x»MZ|xOVar}

0, = fza(0, [t, :=0])
=[t,~Z] g

Jzalo [x:=n]) =
if n==
then [x~Z]o
else [x»NZ]o

Analysis of Software Artifacts -
Spring 2006

35

Zero Analysis Example

o ={x»MZ|xOVar}
g, =[t,»Z] g

O3 = f7a(Gy, [X1= 1))
[x~05(t))] o5

= [x~Z] g,
=[x-Z, t~7] g,

fzn(0, [x:=Y)) = [X=aly)] o

Analysis of Software Artifacts -
Spring 2006

36

18

Zero Analysis Example g

o ={x»MZ|xOVar}
0y =[x-Z, t,»Z] g

Input to [3]; comes from
[=]; and [:=]
Input sr::ould be Zu Oy,
What is g;,?
Solution: assume L
Benefit: a;u L = oy
Same result as ignoring
back edge first time

Zero Analysis Example g

g ={x»MZ|xOVar}

02’) = [XHZ, tZHZ] q
Op =4

Os = fza(o3U 0y, [ts 1= 3))
= fza(osU L, [ts := 3])
= fza(os [ts = 3])
= [t~ NZ] o

Jzalo; [X=n]) =
if n==0
then [x~Z]o
else [x»NZ]o

Analysis of Software Artifacts - 38
Spring 2006

19

Zero Analysis Example

g ={x»MZ|xOVar}
oy =[xmZ,t-7] g
Opp =1L

% =[ts-NZ] o,

G5 = f2a(0%, [ts = X< t5])
05
fts-NZ] o

fzalo; ¥ any other */) = o

Analysis of Software Artifacts -
Spring 2006

39

Zero Analysis Example

g ={x~»MZ|xOVar}
oy =[xmZ,t-7] g
Opp =L

% =[t+NZ] g

Skipping similar nodes...

Analysis of Software Artifacts -
Spring 2006

40

20

Zero Analysis Example

g ={X-MZ|xOVar}
oy =[xmZ,t-7] g
Op =1

Oy = [ty~NZ,...] 3

11 = F2a(010, [tig =X+ 130])
= [t;»MZ] gy

fza(0 [x:=yop 7)) = }-MZ] &

Analysis of Software Artifacts -
Spring 2006

41

Zero Analysis Example

g ={X-MZ|xOVar}
oy =[xmZ, t-7] g
O, =1

O = [thHNZytllHMZ, ..]02,)

012 = fza(0n, [X=ty])
=[x o (ty)] 0
= [x»MZ] 0y,
= [x~»MZ,...] 4

fza(0 [x:=Y)) = [x—aly)] o

Analysis of Software Artifacts -
Spring 2006

42

21

Zero Analysis Example g

g ={X-MZ|xOVar}

02’) = [XHZ, tZHZ] q
O, = [XPMZ, ...] o4

G5 = foalozU gy, [t = 3))
= F2a(lx-MZ] 0, [ts = 3)) <l
= [t NZ] [x-MZ, ...]oy
= [ts»NZ, x-MZ, ...] 05

F2a(0, M) = [k aX)] o

Analysis of Software Artifacts - 43
Spring 2006

Zero Analysis Example g

g ={X-MZ|xOVar}

02’) = [XHZ, tZHZ] q
O, = [x~MZ,...] o4

Propagation of x—»MZ continues

0,, does not change, so no need to X1
iterate again

Analysis of Software Artifacts - 44
Spring 2006

22

Worklist Dataflow Analysis Algorithm g

worklist = new Set();

for all node indexes i do
resultsfi] = L,; Ok to just add entry node

results[entr)] = t,; / if flow functions cannot
worklist.add(all nodes); return L, (examples will

assume this)

while (worklist.isEmpty()) do

i = worklist.pop();

before = L} ~ results|k]; Pop removes the most
kOpred(i) [K] recently added element

after = f(before, node())); from the set (performance
if (!(after C results[i])) optimization)
results[i] = after;
for all kOsucc(i) do
worklist.add(k);

Analysis of Software Artifacts - 45
Spring 2006

Example of Worklist

&K

[a = 0]1 Position Worklist a b
0 1 MZ MZ
[b:=0], 1 2 z MZ
. 2 3 Z Z
while [a<2];do § 4.6 2 2
[b = a]4; 4 5,6 Z Z
5 3,6 MZ Z
[a:=a+1]s; 3 4,6 MZ Z
__ 4 5,6 MZ MZ
[a := 0] 5 3,6 MZ MZ
3 4,6 MZ MZ
Control Flow Graph 4 6 MZ MZ
1236 6 z Mz
4——5
Analysis of Software Artifacts - 46

Spring 2006

Worklist Algorithm Performance g

* Performance
* Visits node whenever input gets less precise
e up to h =height of lattice
* Propagates data along control flow edges
* up to e = max outbound edges per node
* Assume lattice operation cost is 0
* Overall, O(h*e*0)
e Typically h,0,e bounded by n = number of statements in
program
e O(n®) for many data flow analyses
e O(n?) if you assume a number of edges per node is small
* Good enough to run on a function
» Usually not run on an entire program at once, because n
is too big

Analysis of Software Artifacts - 47
Spring 2006

24

