
1

Analysis of Software Artifacts -
Spring 2006

1

Dataflow Analysis

17-654/17-754
Analysis of Software Artifacts

Jonathan Aldrich

Analysis of Software Artifacts -
Spring 2006

2

Overview: Analyses We’ve Seen

• AST walker analyses
• e.g. assignment inside an if statement
• Very approximate, very local

• Misses case where accidental assignment is
done outside an if

• Hoare logic
• Useful for proving correctness
• Requires a lot of work (even for ESC/Java)
• Automated tool is unsound

• So is manual proof, without a proof checker

2

Analysis of Software Artifacts -
Spring 2006

3

Motivation: Dataflow Analysis

• Catch interesting errors
• Non-local: x is null, x is written to y, y is

dereferenced
• Optimize code

• Reduce run time, memory usage…
• Soundness required

• Safety-critical domain
• Assure lack of certain errors

• Cannot optimize unless it is proven safe
• Correctness comes before performance

• Automation required
• Dramatically decreases cost
• Makes cost/benefit worthwhile for far more

purposes

Analysis of Software Artifacts -
Spring 2006

4

Dataflow analysis

• Tracks value flow through program
• Can distinguish order of operations

• Did you read the file after you closed it?
• Does this null value flow to that dereference?

• Differs from AST walker
• Walker simply collects information or checks patterns
• Tracking flow allows more interesting properties

• Abstracts values
• Chooses abstraction particular to property

• Is a variable null?
• Is a file open or closed?
• Could a variable be 0?
• Where did this value come from?

• More specialized than Hoare logic
• Hoare logic allows any property to be expressed
• Specialization allows automation and soundness

3

Analysis of Software Artifacts -
Spring 2006

5

Zero Analysis

• Could variable x be 0?
• Useful to know if you have an expression y/x
• In C, useful for null pointer analysis

• Program semantics
• η maps every variable to an integer

• Semantic abstraction
• σ maps every variable to non zero (NZ), zero(Z),

or maybe zero (MZ)
• Abstraction function for integers αZI :

• αZI(0) = Z
• αZI(n) = NZ for all n ≠ 0

• We may not know if a value is zero or not
• Analysis is always an approximation
• Need MZ option, too

Analysis of Software Artifacts -
Spring 2006

6

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]
σ =[x↦αZI(10)]

4

Analysis of Software Artifacts -
Spring 2006

7

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]
σ =[x↦NZ]

σ =[x↦NZ,y↦σ(x)]

Analysis of Software Artifacts -
Spring 2006

8

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]
σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦αZI(0)]

5

Analysis of Software Artifacts -
Spring 2006

9

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]
σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]

Analysis of Software Artifacts -
Spring 2006

10

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]
σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]

6

Analysis of Software Artifacts -
Spring 2006

11

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]
σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦NZ]

Analysis of Software Artifacts -
Spring 2006

12

Zero Analysis Example

x := 10;

y := x;

z := 0;

while y > -1 do

x := x / y;

y := y-1;

z := 5;

σ =[]
σ =[x↦NZ]

σ =[x↦NZ,y↦NZ]

σ =[x↦NZ,y↦NZ,z↦Z]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦MZ]

σ =[x↦NZ,y↦MZ,z↦NZ]

Nothing more happens!

7

Analysis of Software Artifacts -
Spring 2006

13

Zero Analysis Termination
• The analysis values will not change, no matter how

many times we execute the loop
• Proof: our analysis is deterministic
• We run through the loop with the current analysis values,

none of them change
• Therefore, no matter how many times we run the loop, the

results will remain the same
• Therefore, we have computed the dataflow analysis results

for any number of loop iterations
• Why does this work

• If we simulate the loop, the data values could (in principle)
keep changing indefinitely
• There are an infinite number of data values possible
• Not true for 32-bit integers, but might as well be true

• Counting to 232 is slow, even on today’s processors
• Dataflow analysis only tracks 2 possibilities!

• So once we’ve explored them all, nothing more will change
• This is the secret of abstraction

• We will make this argument more precise later

Analysis of Software Artifacts -
Spring 2006

14

Using Zero Analysis

• Visit each division in the program
• Get the results of zero analysis for the

divisor
• If the results are definitely zero, report

an error
• If the results are possibly zero, report a

warning

8

Analysis of Software Artifacts -
Spring 2006

15

Defining Dataflow Analyses

• Lattice
• Describes program data abstractly
• Abstract equivalent of environment

• Abstraction function
• Maps concrete environment to lattice element

• Flow functions
• Describes how abstract data changes
• Abstract equivalent of expression semantics

• Control flow graph
• Determines how abstract data propagates from

statement to statement
• Abstract equivalent of statement semantics

Analysis of Software Artifacts -
Spring 2006

16

Lattice

• A lattice is a tuple (L, ⊑, ⊔, ⊥, ⊤)
• L is a set of abstract elements
• ⊑ is a partial order on L

• Means at least as precise as
• ⊔ is the least upper bound of two

elements
• Must exist for every two elements in L
• Used to merge two abstract values

• ⊥ (bottom) is the least element of L
• Means we haven’t yet analyzed this yet
• Will become clear later

• ⊤ (top) is the greatest element of L
• Means we don’t know anything

• L may be infinite
• Typically should have finite height

• All paths from ⊥ to ⊤ should be finite
• We’ll see why later

⊤=MZ

Z NZ

⊥

less
precise

more
precise

9

Analysis of Software Artifacts -
Spring 2006

17

Is this a lattice?

⊤

⊥

• A lattice is a tuple (L, ⊑, ⊔, ⊥, ⊤)
• L is a set of abstract elements
• ⊑ is a partial order on L
• ⊔ is the least upper bound of two

elements
• must exist for every two elements in L

• ⊥ (bottom) is the least element of L
• ⊤ (top) is the greatest element of L

• Yes!

Analysis of Software Artifacts -
Spring 2006

18

Is this a lattice?

• A lattice is a tuple (L, ⊑, ⊔, ⊥, ⊤)
• L is a set of abstract elements
• ⊑ is a partial order on L
• ⊔ is the least upper bound of two

elements
• must exist for every two elements in L

• ⊥ (bottom) is the least element of L
• ⊤ (top) is the greatest element of L

• No!
• No bottom element

• ⊥ is not least in the lattice order
• It is mis-named

⊤

a b e

c ⊥ f

10

Analysis of Software Artifacts -
Spring 2006

19

Is this a lattice?

• A lattice is a tuple (L, ⊑, ⊔, ⊥, ⊤)
• L is a set of abstract elements
• ⊑ is a partial order on L
• ⊔ is the least upper bound of two

elements
• must exist for every two elements in L

• ⊥ (bottom) is the least element of L
• ⊤ (top) is the greatest element of L

⊤

a b e

c d f

⊥

Analysis of Software Artifacts -
Spring 2006

20

Definition: Least Upper Bounds

• x ⊔ y = z iff
• z is an upper bound of x and y

• x ⊑ z and y ⊑ z
• z is the least such bound

• ∀w∈L such that x ⊑ w and y ⊑ w we have z ⊑ w

• Also called a join
• Not a lattice

• What is c ⊔ d?
• a, b, and ⊤ are upper bounds

• Assume ⊑ is transitive
• None is least upper bound

⊤

a b e

c d f

⊥

11

Analysis of Software Artifacts -
Spring 2006

21

Is this a lattice?

• A lattice is a tuple (L, ⊑, ⊔, ⊥, ⊤)
• L is a set of abstract elements
• ⊑ is a partial order on L
• ⊔ is the least upper bound of two

elements
• must exist for every two elements in L

• ⊥ (bottom) is the least element of L
• ⊤ (top) is the greatest element of L

• Yes!

⊤

a b e

c d f

⊥

Analysis of Software Artifacts -
Spring 2006

22

Zero Analysis Lattice

• Integer zero lattice
• LZI = { ⊥, Z, NZ, MZ }
• ⊥ ⊑ Z, ⊥ ⊑ NZ, NZ ⊑ MZ, Z ⊑ MZ

• ⊥ ⊑ MZ holds by transitivity

• ⊔ defined as join for ⊑
• x ⊔ y = z iff

• z is an upper bound of x and y
• z is the least such bound

• Obeys laws: ⊥ ⊔ X = X, ⊤ ⊔ X = ⊤, X ⊔ X = X
• Also Z ⊔ NZ = MZ

• ⊥ = ⊥
• ∀X . ⊥ ⊑ X

• ⊤ = MZ
• ∀X . X ⊑ ⊤

⊤=MZ

Z NZ

⊥

12

Analysis of Software Artifacts -
Spring 2006

23

Zero Analysis Lattice

• Integer zero lattice
• LZI = { ⊥, Z, NZ, MZ }
• ⊥ ⊑ Z, ⊥ ⊑ NZ, NZ ⊑ MZ, Z ⊑ MZ
• ⊔ defined as join for ⊑
• ⊥ = ⊥
• ⊤ = MZ

• Program lattice is a tuple lattice
• LZ is the set of all maps from Var to LZI
• σ1 ⊑Z σ2 iff ∀x∈Var . σ1(x) ⊑ZI σ2(x)
• σ1 ⊔Z σ2 = { x ↦ σ1(x) ⊔ZI σ2(x) | x∈Var }
• ⊥ = { x ↦ ⊥ZI | x∈Var }
• ⊤ = { x ↦ ⊤ZI | x∈Var } = { x ↦ MZ | x∈Var }
• Can produce a tuple lattice from any base lattice

• Just define as above

⊤=MZ

Z NZ

⊥

Analysis of Software Artifacts -
Spring 2006

24

Tuple Lattices Visually

• For Var = { x,y }

⊤=MZ

{x↦Z, y↦MZ} {x↦NZ, y↦MZ} {x↦MZ, y↦Z} {x↦MZ, y↦NZ}

… … … … … … … … … … … … …

{x↦MZ, y↦⊥ZI} {x↦Z, y↦Z} {x↦Z, y↦NZ} … … …

{x↦Z, y↦⊥ZI} {x↦NZ, y↦⊥ZI} {x↦⊥ZI, y↦Z} {x↦⊥ZI, y↦NZ}

⊥={x↦⊥ZI, y↦⊥ZI}

13

Analysis of Software Artifacts -
Spring 2006

25

One Path in a Tuple Lattice

⊤={w↦MZ, x↦MZ, y↦MZ, z↦MZ}

… ⊤={w↦Z, x↦MZ, y↦MZ, z↦MZ} …

… ⊤={w↦Z, x↦MZ, y↦NZ, z↦MZ} …

… ⊥={w↦Z, x↦NZ, y↦⊥ZI , z↦⊥ZI} …

… ⊥={w↦⊥ZI, x↦NZ, y↦⊥ZI , z↦⊥ZI} …

⊥={w↦⊥ZI, x↦⊥ZI, y↦⊥ZI , z↦⊥ZI}

Analysis of Software Artifacts -
Spring 2006

26

Abstraction Function

• Maps each concrete program state to a
lattice element
• For tuple lattices, the function can be

defined for values and lifted to tuples

• Integer Zero abstraction function αZI :
• αZI(0) = Z
• αZI(n) = NZ for all n ≠ 0

• Zero Analysis abstraction function αZA :
• αZA(η) = {x ↦ αZI(η(x)) | x∈Var }
• This is just the tuple form of αZI(n)

• Can be done for any tuple lattice

14

Analysis of Software Artifacts -
Spring 2006

27

Control Flow Graph (CFG)

• Shows order of statement execution
• Determines where data flows

• Decomposes expressions into primitive
operations
• Crystal: One CFG node per “useful” AST node

• constants, variables, binary operations, assignments, if,
while…

• Loops are written out
• Form a loop in the CFG

• Benefit: analysis is defined one operation at a time

Analysis of Software Artifacts -
Spring 2006

28

Intuition for Building a CFG

• Connect nodes in order of operation
• Defined by language

• Java order of operation
• Expressions, assignment, sequence

• Evaluate subexpressions left to right
• Evaluate node after children (postfix)

• While, If
• Evaluate condition first, then if/while
• if branches to else and then
• while branches to loop body and exit

15

Analysis of Software Artifacts -
Spring 2006

29

Control Flow Graph Example

while i*2 < 10 do
if x < i+2

then x := x + 5
else i := i + 1

i 2

* 10

while

x

i 2

+

<

if

x

5

+

:=

<

i

1

+

:=

END

BEGIN

ix

Analysis of Software Artifacts -
Spring 2006

30

Flow Functions

• Compute dataflow information after a
statement from dataflow information before
the statement
• Formally, map a lattice element and a CFG node

to a new lattice element
• Analysis performed on 3-address code

• inspired by 3 addresses in assembly language:
add x,y,z

• Convert complex expressions to 3-address
code
• Each subexpression represented by a temporary

variable
• x+3*y � t1:=3; t2:= t1*y; t3:=x+t2

16

Analysis of Software Artifacts -
Spring 2006

31

While3Addr

• copy

• binary op

• literal

• unary op

• label

• jump

• branch

x = y

x = y op z (op ∈ {+,-,*,/,…})

x = n

x = op y (op ∈ {-,!,++,…})

label lab

jump lab

btrue x lab

Analysis of Software Artifacts -
Spring 2006

32

Zero Analysis Flow Functions

• ƒZA(σ, [x := y]) = [x ↦σ(y)] σ
• ƒZA(σ, [x := n]) = if n==0

then [x↦Z]σ
else [x↦NZ]σ

• ƒZA(σ, [x := …]) = [x↦MZ] σ
• Could be more precise, e.g.
ƒZA(σ, [x := y + z]) =

if σ[y]=Z && σ[z]=Z
then [x↦Z]σ else [x↦MZ]σ

• ƒZA(σ, /* any non-assignment */) = σ

17

Analysis of Software Artifacts -
Spring 2006

33

Zero Analysis Example

x := 0;

while x > 3 do

x := x+1

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

34

Zero Analysis Example

Initial dataflow
σ
ι

= { x↦MZ | x∈Var }

Intuition:
We know nothing about
initial variable values. We
could use a precondition if
we had one.

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

18

Analysis of Software Artifacts -
Spring 2006

35

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }

σ2 = ƒZA(σ
ι
, [t2 := 0])

= [t2↦Z] σ
ι

ƒZA(σ, [x := n]) =

if n==0
then [x↦Z]σ
else [x↦NZ]σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

36

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ2 = [t2↦Z] σ

ι

σ3 = ƒZA(σ2, [x := t2])
= [x↦σ2(t2)] σ2

= [x↦Z] σ2

= [x↦Z, t2↦Z] σ
ι

ƒZA(σ, [x := y]) = [x ↦σ(y)] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

19

Analysis of Software Artifacts -
Spring 2006

37

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

Input to [3]5 comes from
[:=]3 and [:=]12

Input should be σ3 ⊔ σ12

What is σ12?
Solution: assume ⊥

Benefit: σ3 ⊔ ⊥ = σ3

Same result as ignoring
back edge first time

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

38

Zero Analysis Example
σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥

σ5 = ƒZA(σ3 ⊔ σ12, [t5 := 3])
= ƒZA(σ3 ⊔ ⊥, [t5 := 3])
= ƒZA(σ3, [t5 := 3])
= [t5↦NZ] σ3

ƒZA(σ, [x := n]) =
if n==0

then [x ↦Z]σ
else [x↦NZ]σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

20

Analysis of Software Artifacts -
Spring 2006

39

Zero Analysis Example
σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ5 = [t5↦NZ] σ3

σ6 = ƒZA(σ5, [t6 := x< t5])

= σ5

= [t5↦NZ] σ3

ƒZA(σ, /* any other */) = σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

40

Zero Analysis Example
σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ6 = [t5↦NZ] σ3

Skipping similar nodes…

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

21

Analysis of Software Artifacts -
Spring 2006

41

Zero Analysis Example
σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ10 = [t10↦NZ,…] σ3

σ11 = ƒZA(σ10, [t11 := x + t10])
= [t11↦MZ] σ10

ƒZA(σ, [x := y op z]) = [x↦MZ] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

42

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ11 = [t10↦NZ,t11↦MZ,…]σ3

σ12 = ƒZA(σ11, [x :=t11])
= [x↦σ11(t11)] σ11

= [x↦MZ] σ11

= [x↦MZ,…] σ3

ƒZA(σ, [x := y]) = [x ↦σ(y)] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

22

Analysis of Software Artifacts -
Spring 2006

43

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = [x↦MZ, …] σ3

σ5 = ƒZA(σ3 ⊔ σ12, [t5 := 3])
= ƒZA([x↦MZ]σ3, [t5 := 3])
= [t5↦ NZ] [x↦MZ, …]σ3

= [t5↦NZ, x↦MZ, …] σ3

ƒZA(σ, [x]k) = [tk↦σ(x)] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

44

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = [x↦MZ,…] σ3

Propagation of x↦MZ continues
σ12 does not change, so no need to

iterate again

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

23

Analysis of Software Artifacts -
Spring 2006

45

Worklist Dataflow Analysis Algorithm

worklist = new Set();
for all node indexes i do

results[i] = ⊥A;
results[entry] = ιA;
worklist.add(all nodes);

while (!worklist.isEmpty()) do
i = worklist.pop();
before = ⊔k∈pred(i) results[k];
after = ƒA(before, node(i));
if (!(after ⊑ results[i]))

results[i] = after;
for all k∈succ(i) do

worklist.add(k);

Ok to just add entry node
if flow functions cannot
return ⊥A (examples will
assume this)

Pop removes the most
recently added element
from the set (performance
optimization)

Analysis of Software Artifacts -
Spring 2006

46

Example of Worklist

[a := 0]1
[b := 0]2
while [a < 2]3 do

[b := a]4;

[a := a + 1]5;

[a := 0]6

Position Worklist a b
0 1 MZ MZ
1 2 Z MZ
2 3 Z Z
3 4,6 Z Z
4 5,6 Z Z
5 3,6 MZ Z
3 4,6 MZ Z
4 5,6 MZ MZ
5 3,6 MZ MZ
3 4,6 MZ MZ
4 6 MZ MZ
6 Z MZ1 2 3

4 5

6

Control Flow Graph

24

Analysis of Software Artifacts -
Spring 2006

47

Worklist Algorithm Performance

• Performance
• Visits node whenever input gets less precise

• up to h = height of lattice
• Propagates data along control flow edges

• up to e = max outbound edges per node
• Assume lattice operation cost is o
• Overall, O(h*e*o)

• Typically h,o,e bounded by n = number of statements in
program

• O(n3) for many data flow analyses
• O(n2) if you assume a number of edges per node is small

• Good enough to run on a function
• Usually not run on an entire program at once, because n

is too big

