
1

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

1

A Requirements Story

• Context: Kitchen remodel
• We wanted big windows

• Asked how wide they could be
• Asked how close to the counter we could

make them

• Architect drew diagram, we ordered the
windows

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

2

What We Saw Last Friday

Wall

Old Window Opening

Top of
counter

Stove and
Hood

Frame of
New

Window

Our
Requirements

Problem

2

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

3

Our Requirements Problem

• Customer wants big windows
• Customer already has tall windows, but doesn’t realize this is

non-standard

• Architect discusses window size
• Mentions that windows will be same height as door
• Doesn’t mention this is lower than our current windows

• and it isn’t obvious because the door is being moved up

• Requirements defect is found during implementation
• Custom windows already constructed—and you can’t take

windows back
• Cost to customer: $3000

I’ll be passing a hat after class!

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

4

Software Engineering Lessons
• Common misperception: customers don’t know what they want

• Usually deeply wrong, even insulting to customer
• Customer is the expert in his or her domain

• Real issue: customers can’t express what they want without an
expert’s help
• We knew we wanted big windows
• If asked, we would have said we wanted windows as tall as we have

them now
• But we didn’t have the expertise to know this was nonstandard

3

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

5

Lessons for Requirements Gathering

• Study customer’s current context
• e.g. what size windows they use right now
• Ask what they like and don’t like about this
• Ask about any changes you are making!

• Don’t give them smaller windows without asking

• Think about the implications of what customers say
• They may not know how to express their requirements directly
• But they will usually give you clues

• Customer asks about window width, lower side of window—maybe you
should ask about window height

• Use prototypes
• We had mock-up drawings of the kitchen
• But none of them included side-by-side comparisons of existing

window elevations to new window elevations
• Had there been these, we would have caught the error

• Unfortunately even experts will sometimes get this wrong
• But they can avoid many mistakes that novices make

6

Static Analysis

15-654:
Analysis of Software Artifacts

Jonathan Aldrich

4

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

7

Find the Bug!

disable interrupts

re-enable interrupts

ERROR: returning
with interrupts disabled

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

8

Metal Interrupt Analysis

is_enabled

is_disabled

disableenable

enable =>
err(double enable)

disable =>
err(double disable)

end path =>
err(end path

with/intr
disabled)

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

5

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

9

Applying the Analysis

initial state is_enabled

transition to is_disabled

transition to is_enabled
final state is_enabled is OK

final state is_disabled: ERROR!

Source: Engler et al., Checking System Rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ’00.

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

10

Outline

• Why static analysis?
• The limits of testing and inspection

• What is static analysis?
• How does static analysis work?
• What are key issues for analysis of OO

systems?
• What tools are available?
• How does it fit into my organization?

6

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

11

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

12

Static Analysis Finds “Mechanical” Errors

• Defects that result from inconsistently following simple,
mechanical design rules

• Security vulnerabilities
• Buffer overruns, unvalidated input…

• Memory errors
• Null dereference, uninitialized data…

• Resource leaks
• Memory, OS resources…

• Violations of API or framework rules
• e.g. Windows device drivers; real time libraries; GUI frameworks

• Exceptions
• Arithmetic/library/user-defined

• Encapsulation violations
• Accessing internal data, calling private functions…

• Race conditions
• Two threads access the same data without synchronization

7

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

13

Difficult to Find with Testing, Inspection

• Non-local, uncommon paths
• Security vulnerabilities
• Memory errors
• Resource leaks
• Violations of API or framework rules
• Exceptions
• Encapsulation violations

• Non-deterministic
• Race conditions

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

14

Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small
• Too many paths to consider as system grew

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations
• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Windows Vista development

• Early 2000s: add static analysis
• More on this later

8

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

15

Process, Cost, and Quality

CMM: 1 2 3 4 5

Software
Quality

S&S, Agile, RUP, etc: less rigorous . . . more rigorous

Process intervention,
testing, and inspection

yield first-order
software quality

improvement

Additional technology
and tools are needed

to close the gap

Critical Systems
Acceptability

Process
Rigor, Cost

Slide: William Scherlis

Perfection
(unattainable)

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

16

Outline

• Why static analysis?
• What is static analysis?

• Abstract state space exploration

• How does static analysis work?
• What are key issues for analysis of OO

systems?
• What tools are available?
• How does it fit into my organization?

9

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

17

Static Analysis Definition

• Static program analysis is the systematic
examination of an abstraction of a program’s
state space

• Metal interrupt analysis
• Abstraction

• 2 states: enabled and disabled
• All program information—variable values, heap contents—is

abstracted by these two states, plus the program counter
• Systematic

• Examines all paths through a function
• What about loops? More later…

• Each path explored for each reachable state
• Assume interrupts initially enabled (Linux practice)
• Since the two states abstract all program information, the

exploration is exhaustive

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

18

Static Analysis Definition

• Static program analysis is the systematic
examination of an abstraction of a program’s
state space

• Simple array bounds analysis
• Abstraction

• Given array a, track whether each integer variable and
expression is <,=, or > than length(a)
• Abstract away precise values of variables and expressions
• Abstract away the heap

• Systematic
• Examines all paths through a function
• Each path explored for each reachable state

• Exploration is exhaustive, since abstract state abstracts all
concrete program state

10

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

19

Array Bounds Example
1. void foo(unsigned n) {
2. char str = new char[n+1];
3. int idx = 0;
4. if (n > 5)
5. idx = n
6. else
7. idx = n+1
8. str[idx] = ‘c’;
9. }

Path 1 (before stmt): then branch
2: ∅
3: n↦<

4: n↦<, idx↦<

5: n↦<, idx↦<

8: n↦<, idx↦<

9: n↦<, idx↦<

no errors

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

20

Array Bounds Example
1. void foo(unsigned n) {
2. char str = new char[n+1];
3. int idx = 0;
4. if (n > 5)
5. idx = n
6. else
7. idx = n+1
8. str[idx] = ‘c’;
9. }

Path 1 (before stmt): else branch
2: ∅
3: n↦<

4: n↦<, idx↦<

7: n↦<, idx↦<,=

8: n↦<, idx↦<,=

9: n↦<, idx↦<,=

error: array out of bounds at line 8

11

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

21

Static Analysis Definition

• Static program analysis is the systematic examination
of an abstraction of a program’s state space

• Simple model checking for race conditions
• Race condition defined:

[From Savage et al., Eraser: A Dynamic Data Race Detector for
Multithreaded Programs]
• Two threads access the same variable
• At least one access is a write
• No explicit mechanism prevents the accesses from being

simultaneous
• Abstraction

• Program counter of each thread, state of each lock
• Abstract away heap and program variables

• Systematic
• Examine all possible interleavings of all threads

• Flag error if no synchronization between accesses
• Exploration is exhaustive, since abstract state abstracts all concrete

program state

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

22

Model Checking for Race Conditions

thread1() {
read x;

}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK

Thread 1 Thread 2

read x

lock

write x

unlock

12

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

23

Model Checking for Race Conditions

thread1() {
read x;

}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK

Thread 1 Thread 2

read x

lock

write x

unlock

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

24

Model Checking for Race Conditions

thread1() {
read x;

}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK
Interleaving 3: Race

Thread 1 Thread 2

read x

lock

write x

unlock

13

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

25

Model Checking for Race Conditions

thread1() {
read x;

}
thread2() {

lock();
write x;
unlock();

}

Interleaving 1: OK
Interleaving 2: OK
Interleaving 3: Race
Interleaving 4: Race

Thread 1 Thread 2

read x

lock

write x

unlock

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

26

Compare Analysis to Testing, Inspection

• Why might it be hard to test/inspect for:
• Array bounds errors?

• Forgetting to re-enable interrupts?

• Race conditions?

14

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

27

Compare Analysis to Testing, Inspection

• Array Bounds, Interrupts
• Testing

• Errors typically on uncommon paths or uncommon input
• Difficult to exercise these paths

• Inspection
• Non-local and thus easy to miss

• Array allocation vs. index expression
• Disable interrupts vs. return statement

• Finding Race Conditions
• Testing

• Cannot force all interleavings
• Inspection

• Too many interleavings to consider
• Check rules like “lock protects x” instead

• But checking is non-local and thus easy to miss a case

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

28

Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?

• Termination, Soundness, and Precision

• What are key issues for analysis of OO
systems?

• What tools are available?
• How does it fit into my organization?

15

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

29

How can Analysis Search All Paths?

• How many paths are in a program?
• Exponential # paths with if statements
• Infinite # paths with loops
• How could we possibly cover them all?

• Secret weapon: Abstraction
• Finite number of (abstract) states
• If you come to a statement and you’ve already

explored a state for that statement, stop.
• The analysis depends only on the code and the current

state
• Continuing the analysis from this program point and state

would yield the same results you got before
• If the number of states isn’t finite, too bad

• Your analysis may not terminate

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

30

Example

1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12.}

Path 1 (before stmt): true/no loop
2: is_enabled
3: is_enabled
6: is_disabled
11: is_disabled
12: is_enabled

no errors

16

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

31

Example

1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12.}

Path 2 (before stmt): true/1 loop
2: is_enabled
3: is_enabled
6: is_disabled
7: is_disabled
8: is_enabled
9: is_enabled
11: is_disabled

already been here

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

32

Example

1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12.}

Path 3 (before stmt): true/2+
loops

2: is_enabled
3: is_enabled
6: is_disabled
7: is_disabled
8: is_enabled
9: is_enabled
6: is_disabled

already been here

17

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

33

Example

1. void foo(int x) {
2. if (x == 0)
3. bar(); cli();
4. else
5. baz(); cli();
6. while (x > 0) {
7. sti();
8. do_work();
9. cli();
10. }
11. sti();
12.}

Path 4 (before stmt): false
2: is_enabled
5: is_enabled
6: is_disabled

already been here

all of state space has been
explored

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

34

Sound Analyses

• A sound analysis never misses an error
[of the relevant error category]

• No false negatives (missed errors)
• Requires exhaustive exploration of state space

• Inductive argument for soundness
• Start program with abstract state for all possible initial

concrete states
• At each step, ensure new abstract state covers all concrete

states that could result from executing statement on any
concrete state from previous abstract state

• Once no new abstract states are reachable, by induction all
concrete program executions have been considered

18

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

35

Soundness and Precision

Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

36

Soundness and Precision

Program state covered in actual execution

Program state covered by executing from
abstract state

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)

19

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

37

Abstraction and Soundness

• Consider “Sound Testing”
[testing that finds every bug]

• Requires executing program on every input
• (and on all interleavings of threads)

• Infinite number of inputs for realistic programs
• Therefore impossible in practice

• Abstraction
• Infinite state space � finite set of states
• Can achieve soundness by exhaustive exploration

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

38

Array Bounds Precision
1. void foo(unsigned n) {
2. char str = new char[n+1];
3. int idx = n-1;
4. idx = idx+1;
5. str[idx] = ‘c’;
6. }

What will be the result of static
analysis?

Path 1 (before stmt):
2: ∅
3: n↦<

4: n↦<, idx↦<

5: n↦<, idx↦<,=

6: n↦<, idx↦<,=

error: array out of bounds at line 5
False positive! (not a real error)

What went wrong?
• At statement 4 we only know

idx < length(str)
• We need to know

idx < length(str)-1

20

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

39

Regaining Array Bounds Precision

• Keep track of exact value of index
• Infinite states

• or 232, close enough

• Add a <-1 state
• Not general enough

• Track formula relating expressions to arrays
• Undecidable for arbitrary formulas

• Track restricted formulas
• Decent solution in practice

• Presburger arithmetic

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

40

Analysis as an Approximation
• Analysis must approximate in practice

• May report errors where there are really none
• False positives

• May not report errors that really exist
• False negatives

• All analysis tools have either false negatives or false
positives

• Approximation strategy
• Find a pattern P for correct code

• which is feasible to check (analysis terminates quickly),
• covers most correct code in practice (low false positives),
• which implies no errors (no false negatives)

• Analysis can be pretty good in practice
• Many tools have low false positive/negative rates
• A sound tool has no false negatives

• Never misses an error in a category that it checks

21

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

41

Attribute-Specific Analysis

• Analysis is specific to
• A quality attribute

• Race condition
• Buffer overflow
• Use after free

• A strategy for verifying that attribute
• Protect each shared piece of data with a lock
• Presburger arithmetic decision procedure for array

indexes
• Only one variable points to each memory location

• Analysis is inappropriate for some attributes
• Approach to assurance is ad-hoc and follows no

clear pattern
• No known decision procedure for checking an

assurance pattern that is followed
• Examples?

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

42

Soundness Tradeoffs

• Sound Analysis
• Assurance that no

bugs are left
• Of the target error

class

• Can focus other
QA resources on
other errors

• May have more
false positives

• Unsound Analysis
• No assurance that

bugs are gone
• Must still apply

other QA
techniques

• May have fewer
false positives

22

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

43

Which to Choose?

• Cost/Benefit tradeoff
• Benefit: How valuable is the bug?

• How much does it cost if not found?
• How expensive to find using testing/inspection?

• Cost: How much did the analysis cost?
• Effort spent running analysis, interpreting results –

includes false positives
• Effort spent finding remaining bugs (for unsound analysis)

• Rule of thumb
• For critical bugs that testing/inspection can’t find, a

sound analysis is worth it
• As long as false positive rate is acceptable

• For other bugs, maximize engineer productivity

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

44

Outline

• Why static analysis?
• What is static analysis?
• How does static analysis work?
• What features make analysis practical?

• Design intent, modularity, incrementality,
and immediate reward

• Illustration: Microsoft’s PreFAST tool

• How to fit analysis into an organization?

23

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

45

Standard Annotation Language (SAL)

• A language for specifying contracts between
functions
• Intended to be lightweight and practical
• More powerful—but less practical—contracts

supported in systems like ESC/Java or Spec#

• Preconditions
• Conditions that hold on entry to a function
• What a function expects of its callers

• Postconditions
• Conditions that hold on exiting a function
• What a function promises to its callers

• Initial focus: memory usage
• buffer sizes, null pointers, memory allocation…

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

46

SAL is checked using PREfast

• Lightweight analysis tool
• Only finds bugs within a single procedure
• Also checks SAL annotations for consistency with code

• To use it (for free!)
• Download and install Microsoft Visual C++ 2005 Express

Edition
• http://msdn.microsoft.com/vstudio/express/visualc/

• Download and install Microsoft Windows SDK for Vista
• http://www.microsoft.com/downloads/details.aspx?familyid=c2b1

e300-f358-4523-b479-f53d234cdccf
• Use the SDK compiler in Visual C++

• In Tools | Options | Projects and Solutions | VC++ Directories
add C:\Program Files\Microsoft SDKs\Windows\v6.0\VC\Bin (or
similar)

• In project Properties | Configuration Properties | C/C++ |
Command Line add /analyze as an additional option

24

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

47

Demonstration

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

48

Buffer/Pointer Annotations
• Format

• Leading underscore
• List of components below

_in

_inout

_out

_bcount(size)
_ecount(size)

_opt

The function reads from the buffer. The caller
provides the buffer and initializes it.

The function both reads from and writes to buffer.
The caller provides the buffer and initializes it.

The function writes to the buffer. If used on the
return value, the function provides the buffer
and initializes it. Otherwise, the caller provides
the buffer and the function initializes it.

The buffer size is in bytes.
The buffer size is in elements.

This parameter can be NULL.

25

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

49

PREfast: Immediate Checks

• Library function usage
• deprecated functions

• e.g. gets() vulnerable to buffer overruns
• correct use of printf

• e.g. does the format string match the parameter types?
• result types

• e.g. using macros to test HRESULTs

• Coding errors
• = instead of == inside an if statement

• Local memory errors
• Assuming malloc returns non-zero
• Array out of bounds

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

50

Other Useful Annotations
__checkReturn

• .Net Annotation Format
• Pre/Post attribute with arguments for

the pre or postcondition
• Surrounded in brackets
• Alternative for the annotations above
• Required for Tainted

[SA_Pre(Tainted=SA_Yes)]

[SA_Pre(Tainted=SA_No)]

[SA_Post(Tainted=SA_No)]

Callers must check the return value.

This argument is tainted and cannot be trusted
without validation.

This argument is not tainted and can be trusted

Same as above, but useful as a postcondition

26

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

51

Other Supported Annotations

• How to test if this function succeeded

• How much of the buffer is initialized?

• Is a string null-terminated?

• Is an argument reserved?

• Is this an overriding method?

• Is this function a callback?

• Is this used as a format string?

• What resources might this function block on?

• Is this a fallthrough case in a switch?

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

52

SAL: the Benefit of Annotations

• Annotations express design intent
• How you intended to achieve a particular quality attribute

• e.g. never writing more than N elements to this array

• As you add more annotations, you find more errors
• Get checking of library users for free
• Plus, those errors are less likely to be false positives

• The analysis doesn’t have to guess your intention

• Annotations also improve scalability
• PreFAST uses very sophisticated analysis techniques
• These techniques can’t be run on large programs
• Annotations isolate functions so they can be analyzed one at

a time

27

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

53

SAL: the Benefit of Annotations
• How to motivate developers?

• Especially for millions of lines of unannotated code?

• Microsoft approach
• Require annotations at checkin

• Reject code that has a char* with no __ecount()

• Make annotations natural
• Ideally what you would put in a comment anyway

• But now machine checkable
• Avoid formality with poor match to engineering practices

• Incrementality
• Check code ↔ design consistency on every compile
• Rewards programmers for each increment of effort

• Provide benefit for annotating partial code
• Can focus on most important parts of the code first
• Avoid excuse: I’ll do it after the deadline

• Build tools to infer annotations
• Inference is approximate

• May need to change annotations
• Hopefully saves work overall

• Unfortunately not yet available outside Microsoft

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

54

void work()
{

int elements[200];
wrap(elements, 200);

}

void wrap(int *buf,
int len)

{
int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

}

void zero(int *buf,
int len)

{
int i;
for(i = 0; i <= len; i++)

buf[i] = 0;
}

Case Study: SALinfer

Track flow of values through the code

1. Finds stack buffer
2. Adds annotation
3. Finds assignments
4. Adds annotation

void work()
{

int elements[200];
wrap(elements, 200);

}

void wrap(pre elementCount(len) int *buf,
int len)

{
int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

}

void zero(int *buf,
int len)

{
int i;
for(i = 0; i <= len; i++)

buf[i] = 0;
}

void work()
{

int elements[200];
wrap(elements, 200);

}

void wrap(pre elementCount(len) int *buf,
int len)

{
int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

}

void zero(pre elementCount(len) int *buf,
int len)

{
int i;
for(i = 0; i <= len; i++)

buf[i] = 0;
}

[Source:
Manuvir Das]

28

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

55

void work()
{

int elements[200];
wrap(elements, 200);

}

void wrap(pre elementCount(len) int *buf,
int len)

{
int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

}

void zero(pre elementCount(len) int *buf,
int len)

{
int i;
for(i = 0; i <= len; i++)

buf[i] = 0;
}

Building and solving constraints

1. Builds constraints
2. Verifies contract
3. Builds constraints

len = length(buf); i ≤ len
4. Finds overrun

i < length(buf) ? NO!

Case Study: SAL verification

Available as part of Microsoft Visual Studio 2005

[Source:
Manuvir Das]

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

56

Recommendations

• If you use Microsoft’s tools…
• Turn on /analyze
• Annotate all functions that write to buffers
• Annotate all library functions
• Annotation other functions as possible

29

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

57

Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• What are key issues for analysis of OO
systems?

• What tools are available?

• How does it fit into my organization?
• Lessons learned at Microsoft: Introduction,

measurement, refinement, check in gates
• Source for Microsoft experience: Manuvir Das

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

58

Introducing Static Analysis

• Incremental approach
• Begin with early adopters, small team
• Use these as champions in organization

• Choose/build the tool right
• Not too many false positives
• Good error reporting

• Show error context, trace
• Focus on big issues

• Something developers, company cares about
• Ensure you can teach the tool

• Suppress false positive warnings
• Add design intent for assertions, assumptions

• Bugs should be fixable [Manuvir Das]
• Easy to fix, easy to verify, robust to small changes

• Support team
• Answer questions, help with tool

30

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

59

Measuring Analysis’s Impact

• Static analysis is not free
• Expense of commercial tools
• Time to learn & use

• Measure benefits
• False negatives, false positives
• Bugs found
• Impact on code quality, developer

productivity

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

60

Root Cause Analysis

• Deep analysis
• More than cause of each bug
• Identify patterns in defects
• Understand why the defect was introduced
• Understand why it was not caught earlier

• Opportunity to intervene
• New static analyses

• written by analysis support team
• Other process interventions

31

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

61

Check-in Gates

• Microsoft practice
• Cannot check in code unless analysis suite has

been run and produced no errors
• Test coverage, dependency violation, insufficient/bad

design intent, integer overflow, allocation arithmetic,
buffer overruns, memory errors, security issues

• Requirements for success
• Low false positives
• A way to override false positive warnings

• Typically through inspection
• Developers must buy into static analysis first

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

62

Impact at Microsoft

• Thousands of bugs caught monthly

• Significant observed quality improvements
• e.g. buffer overruns latent in codebaes

• Widespread developer acceptance
• Check-in gates
• Writing specifications

32

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

63

Contrasting Case Study

• Web company
• Security, server reliability issues crucial

• Contrast to Microsoft
• Agile process—no room for extra QA stage
• Fewer resources for in-house development

• Choice: FindBugs
• Customize Eclipse plugin to local environment
• Pick and choose most important analyses
• Put on developers’ desktops
• Quality gates for lifecycle transitions
• Writing analyses to capture common issues

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

64

Analysis Maturity Model

Caveat: not yet enough experience to make strong claims
• Level 1: use typed languages, ad-hoc tool use
• Level 2: run off-the-shelf tools as part of process
• Level 3: integrate tools into process

• check in quality gates, milestone quality gates
• integrate into build process, developer environments
• pick and choose analyses which are most useful
• use annotations/settings to teach tool about internal libraries

• Level 4: customized analyses for company domain
• extend analysis tools to catch observed problems

• Level 5: continual optimization of analysis
infrastructure
• mine patterns in bug reports
• gather data on analysis effectiveness
• tune analysis based on observations

33

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

65

The Analysis Revolution

• Analysis is revolutionizing QA practices in
leading companies today

• Exhibit A: Microsoft
• Comprehensive analysis is centerpiece of QA for

Longhorn (Windows)
• Now affects every part of the engineering process

• Analysis technology
• Enables organizations to increase quality while

enhancing functionality
• Will differentiate tomorrow's leaders in the market

• Now is the time to leverage analysis for QA

23 February 2007 15-654: Analysis of Software Artifacts
Static Analysis

66

Questions?

