Assignment 4 (Written, Tool):
Hoare Logic and Spec#

17-654/17-754: Analysis of Software Artifacts
Jonathan Aldrich (jonathan.aldrich@cs.cmu.edu )

Due: Thursday, February 22, 2007 (10:30am)

150 points total

Turn in a file named <username>-17654-A4.zip, where username is
your Andrew id. This zip file should contain answers.{txt, pdf, doc} which
should contain your responses to each of the written questions. The zip file
should also contain Stack.ssc, stack-output.txt, Min.ssc and min-output.txt
which are described in the following sections. At the top of the answers file,
state your name, Andrew id, and how long you spent on the assignment.

Assignment Objectives:

e Become familiar with specification constructs including pre- and post-
conditions, loop invariants and variant functions

e Prove small programs correct using Hoare logic techniques

e Use Spec# to check functional correctness properties of programs



1 Hoare Logic (50 points)

Question 1 (10 points).
Consider the following WHILE program:
1:=1;
r.=1;
while (i < n) do
t:=14+1;
ri=r+4+1

For the while program given above, state a (a) precondition, (b)
postcondition, (c) loop invariant, and (d) variant function. The
postcondition should precisely define the value of r in terms of
n.

Question 2 (30 points).

Using weakest preconditions, state the proof obligations that as-
sure (a) the invariant is initially true on entry to the loop, (b) the
loop invariant holds after execution of each loop, (c) the vari-
ant function is greater than zero at loop entry, (d) the variant
function decreases in the loop, and (e) the postcondition holds.

Question 3 (10 points).

Prove each of the proof obligations above. Your proof should
be done at the level of detail shown in lecture, i.e. small steps
with justifications given for each step.



2 Using Spec# (100 points)

Question 4 (60 points).

For this assignment you will be required to use the Microsoft Visual
Studio environment. Visual Studio 2005 works. Visual Studio 2003 should
work, but you should consider it unsupported for the purposes of this
course. If you do not currently have Visual Studio, you are all able to obtain
it through ISR. According to Ed Walter, you have all received instruction on
how to download and install the software that is provided as part of the Mi-
crosoft Academic Alliance. If you have trouble with this, please see him for
assistance. If you do not use a Windows-compatible PC, it will be necessary
to obtain access to one for this assignment. The clusters are a good place
for this. All instructions from here on assume that you have Visual Studio
installed.

Installing Spec# and the Simplify Theorem Prover: In order to install
Spect#, start by visiting the Spec# homepage:

http://research.microsoft.com/specsharp/

From here you will be able to install Spec# for VS2005. Do not use the
V52003 version of Spec#. Additionally, you must install the Simplify theo-
rem prover. Instructions on this process are given at the following URL:

http://research.microsoft.com/specsharp/simplify.htm

From within Visual Studio, open the project Stack that we have in-
cluded with the assignment. This project contains C# source files, Stack.ssc
and StackCheck.ssc. The Spec# static verifier should be run automatically
in the background. Any warnings that it finds will be printed to the “Er-
ror List” window. (If this window is not visible, enable it via the “View”
menu.) The output of the static verifier can also be seen in the “Output”
window, and you will need to have this window visible so that can copy
the tool’s output and submit it.

Add pre- and post-conditions and invariants to Stack.ssc and fix any
bugs you find in the code, until Spec# runs on both files without producing
any warnings. You may not edit StackCheck.ssc. Nor may you remove the
annotations that are already present in Stack.ssc.

(To learn more about the specifications that you can use in Spec# we
have included some documentation in a file called “specsharp_docs.html.”
The installation of Spec# includes sample files which may also be helpful.
Finally, additional documentation can be found on the Spec# web site.)

Turn in: (a) your edited version of Stack.ssc, and (b) a printout of Spec#’s
output when run on the two files in stack-output.txt.



Question 5 (30 points).
Write a method that returns the minimum integer in a given array. This
method should have the following signature:

public int findMin(int[]! array);

Check the correctness of this method using the Spec# static verifier, i.e.
that it really finds the minimum value. Your solution should use appropri-
ate requires, ensures, and invariant clauses.

Turn in: (a) your C# code Min.ssc, and (b) a printout of Spec#’s output
when run on the Min.ssc in min-output.txt.

Question 6 (10 points).

In the file answers.txt, criticize the Spec# static verifier tool (1-2 para-
graphs). What did you like about it, and conversely what stands in the
way of making this a practical tool?



