
1

Analysis of Software Artifacts -
Spring 2006

1

Dataflow Analysis, Continued

17-654/17-765
Analysis of Software Artifacts
Jonathan Aldrich

Analysis of Software Artifacts -
Spring 2006

2

Lattice

• A lattice is a tuple (L, ⊑, ⊔, ⊥, ⊤)
• L is a set of abstract elements
• ⊑ is a partial order on L

• Means at least as precise as
• ⊔ is the least upper bound of two

elements
• Must exist for every two elements in L
• Used to merge two abstract values

• ⊥ (bottom) is the least element of L
• Means we haven’t yet analyzed this yet
• Will become clear later

• ⊤ (top) is the greatest element of L
• Means we don’t know anything

⊤=MZ

Z NZ

⊥

2

Analysis of Software Artifacts -
Spring 2006

3

Clarification: Least Upper Bounds

• x ⊔ y = z iff
• z is an upper bound of x and y

• x ⊑ z and y ⊑ z
• z is the least such bound

• ∀w∈L such that x ⊑ w and y ⊑ w we have z ⊑ w

• Also called a join
• Not a lattice

• What is c ⊔ d?
• a, b, and ⊤ are upper bounds

• Assume ⊑ is transitive
• None is least upper bound

⊤

a b e

c d f

⊥

Analysis of Software Artifacts -
Spring 2006

4

Zero Analysis Lattice

• Integer zero lattice
• LZI = { ⊥, Z, NZ, MZ }
• ⊥ ⊑ Z, ⊥ ⊑ NZ, NZ ⊑ MZ, Z ⊑ MZ

• ⊥ ⊑ MZ holds by transitivity

• ⊔ defined as join for ⊑
• x ⊔ y = z iff

• z is an upper bound of x and y
• z is the least such bound

• Obeys laws: ⊥ ⊔ X = X, ⊤ ⊔ X = ⊤, X ⊔ X = X
• Also Z ⊔ NZ = MZ

• ⊥ = ⊥
• ∀X . ⊥ ⊑ X

• ⊤ = MZ
• ∀X . X ⊑ ⊤

⊤=MZ

Z NZ

⊥

3

Analysis of Software Artifacts -
Spring 2006

5

Abstraction Function

• Maps each concrete program state to a
lattice element
• For tuple lattices, the function can be

defined for values and lifted to tuples

• Integer Zero abstraction function αZI :
• αZI(0) = Z
• αZI(n) = NZ for all n ≠ 0

• Zero Analysis abstraction function αZA :
• αZA(η) = {x ↦ αZI(η(x)) | x∈Var }
• This is just the tuple form of αZI(n)

• Can be done for any tuple lattice

Analysis of Software Artifacts -
Spring 2006

6

Control Flow Graph (CFG)

• Shows order of statement execution
• Determines where data flows

• Decomposes expressions into primitive
operations
• Crystal: One CFG node per “useful” AST node

• constants, variables, binary operations, assignments, if,
while…

• Loops are written out
• Form a loop in the CFG

• Benefit: analysis is defined one operation at a time

4

Analysis of Software Artifacts -
Spring 2006

7

Intuition for Building a CFG

• Connect nodes in order of operation
• Defined by language

• Java order of operation
• Expressions, assignment, sequence

• Evaluate subexpressions left to right
• Evaluate node after children (postfix)

• While, If
• Evaluate condition first, then if/while
• if branches to else and then
• while branches to loop body and exit

Analysis of Software Artifacts -
Spring 2006

8

Control Flow Graph Example

while i*2 < 10 do
if x < i+2

then x := x + 5
else i := i + 1

i 2

* 10

while

x

i 2

+

<

if

x

5

+

:=

<

i

1

+

:=

END

BEGIN

ix

5

Analysis of Software Artifacts -
Spring 2006

9

Flow Functions

• Compute dataflow information after a
statement from dataflow information before
the statement
• Formally, map a lattice element and a CFG node

to a new lattice element

• Expression flow functions
• Treat each expression as an assignment to a

temporary variable
• x+3*y � t1:=x; t2:=3; t3:=y; t4:=t2*t3; t5:=t1+t4

• That variable is used in containing expressions
• Instead of explicitly writing temporaries, we’ll keep

track of them by labeling nodes
• [[x]1 + [[3]2 * [y]3]4]5

Analysis of Software Artifacts -
Spring 2006

10

Zero Analysis Flow Functions

• ƒZA(σ, [x]k) = [tk↦σ(x)] σ
• ƒZA(σ, [n]k) = if n==0

then [tk↦Z]σ
else [tk↦NZ]σ

• ƒZA(σ, [x := […]n]k) = [x↦σ(tn)] σ
• ƒZA(σ, [[…]n op […]m]k) = [tk↦MZ] σ

• Could be more precise, e.g.
ƒZA(σ, [[…]n + […]m]k) =

if σ[tn]=Z && σ[tm]=Z
then [tk↦Z]σ else [tk↦MZ]σ

• ƒZA(σ, /* any other */) = σ

6

Analysis of Software Artifacts -
Spring 2006

11

Zero Analysis Example

x := 0;

while x > 3 do

x := x+1

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

12

Zero Analysis Example

Initial dataflow
σ
ι

= { x↦MZ | x∈Var }

Intuition:
We know nothing about
initial variable values. We
could use a precondition if
we had one.

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

7

Analysis of Software Artifacts -
Spring 2006

13

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }

σ1 = ƒZA(σ
ι
, [x]1)

= [t1↦σ
ι
(x)] σ

ι

= [t1↦MZ] σ
ι

= σ
ι

ƒZA(σ, [x]k) = [tk↦σ(x)] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

14

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ1 = σ

ι

σ2 = ƒZA(σ1, [0]2)
= [t2↦Z] σ1

= [t2↦Z] σ
ι

ƒZA(σ, [n]k) =

if n==0
then [tk↦Z]σ
else [tk↦NZ]σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

8

Analysis of Software Artifacts -
Spring 2006

15

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ2 = [t2↦Z] σ

ι

σ3 = ƒZA(σ2, [[x]1 :=[…]2]3)
= [x↦σ2(t2)] σ2

= [x↦Z] σ2

= [x↦Z, t2↦Z] σ
ι

ƒZA(σ, [x := […]n]k) =
[x↦σ(tn)] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

16

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

Input to [x]4 comes from
[:=]3 and [:=]12

Input should be σ3 ⊔ σ12

What is σ12?
Solution: assume ⊥

Benefit: σ3 ⊔ ⊥ = σ3

Same result as ignoring
back edge first time

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

9

Analysis of Software Artifacts -
Spring 2006

17

Zero Analysis Example
σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥

σ4 = ƒZA(σ3 ⊔ σ12, [x]4)
= ƒZA(σ3 ⊔ ⊥, [x]4)
= ƒZA(σ3, [x]4)
= [t4↦ σ3(x)] σ3

= [t4↦Z] σ3

ƒZA(σ, [x]k) = [tk↦σ(x)] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

18

Zero Analysis Example
σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ4 = [t4↦Z] σ3

σ5 = ƒZA(σ4, [3]5)
= [t5↦NZ] σ4

= [t5↦NZ, t4↦Z] σ3

ƒZA(σ, [n]k) =
if n==0

then [tk↦Z]σ
else [tk↦NZ]σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

10

Analysis of Software Artifacts -
Spring 2006

19

Zero Analysis Example
σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ5 = [t5↦NZ, t4↦Z] σ3

σ6 = ƒZA(σ5, [<]6)

= σ5

= [t5↦NZ, t4↦Z] σ3

ƒZA(σ, /* any other */) = σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

20

Zero Analysis Example
σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ6 = [t5↦NZ, t4↦Z] σ3

Skipping similar nodes…

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

11

Analysis of Software Artifacts -
Spring 2006

21

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ10 = [t9↦Z,t10↦NZ,…] σ3

σ11 = ƒZA(σ10, [[…]9 + […]10]11)
= [t11↦MZ] σ10

ƒZA(σ, [[…]n op […]m]k) = [tk↦MZ] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

22

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = ⊥
σ11 = [t9↦Z,t10↦NZ,t11↦MZ,…]σ3

σ12 = ƒZA(σ11, [[x]8 :=[…]11]12)
= [x↦σ11(t11)] σ11

= [x↦MZ] σ11

= [x↦MZ,…] σ3

ƒZA(σ, [x := […]n]k) =
[x↦σ(tn)] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

12

Analysis of Software Artifacts -
Spring 2006

23

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = [x↦MZ,…] σ3

σ4 = ƒZA(σ3 ⊔ σ12, [x]4)
= ƒZA([x↦MZ]σ3, [x]4)
= [t4↦ [x↦MZ]σ3(x)] [x↦MZ]σ3

= [t4↦MZ, x↦MZ] σ3

ƒZA(σ, [x]k) = [tk↦σ(x)] σ

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

Analysis of Software Artifacts -
Spring 2006

24

Zero Analysis Example

σ
ι

= { x↦MZ | x∈Var }
σ3 = [x↦Z, t2↦Z] σ

ι

σ12 = [x↦MZ,…] σ3

Propagation of x↦MZ continues
σ12 does not change, so no need to

iterate again

[while]7[:=]3

[;]13

[x]1 [0]2 [<]6

[x]4 [3]5

[:=]12

[x]8

[x]9 [1]10

[+]11

ENDBEGIN

13

Analysis of Software Artifacts -
Spring 2006

25

Worklist Dataflow Analysis Algorithm

worklist = new Set();
for all node indexes i do

results[i] = ⊥A;
results[entry] = ιA;
worklist.add(all nodes);

while (!worklist.isEmpty()) do
i = worklist.pop();
before = ⊔k∈pred(i) results[k];
after = ƒA(before, node(i));
if (!(after ⊑ results[i]))

results[i] = after;
for all k∈succ(i) do

worklist.add(k);

Ok to just add entry node
if flow functions cannot
return ⊥A (examples will
assume this)

Pop removes the most
recently added element
from the set (performance
optimization)

Analysis of Software Artifacts -
Spring 2006

26

Example of Worklist
Simplified to the statement level

[a := 0]1
[b := 0]2
while [a < 2]3 do

[b := a]4;

[a := a + 1]5;

[a := 0]6

Position Worklist a b
0 1 MZ MZ
1 2 Z MZ
2 3 Z Z
3 4,6 Z Z
4 5,6 Z Z
5 3,6 MZ Z
3 4,6 MZ Z
4 5,6 MZ MZ
5 3,6 MZ MZ
3 4,6 MZ MZ
4 6 MZ MZ
6 Z MZ1 2 3

4 5

6

Control Flow Graph

14

Analysis of Software Artifacts -
Spring 2006

27

Worklist Algorithm Performance

• Performance
• Visits node whenever input gets less precise

• up to h = height of lattice
• Propagates data along control flow edges

• up to e = max outbound edges per node
• Assume lattice operation cost is o
• Overall, O(h*e*o)

• Typically h,o,e bounded by n = number of statements in
program

• O(n3) for many data flow analyses
• O(n2) if you assume a number of edges per node is small

• Good enough to run on a function
• Usually not run on an entire program at once, because n

is too big

Analysis of Software Artifacts -
Spring 2006

28

Constant Propagation

• Goal: determine which variables hold a
constant value:

x := 3;
y := x+7;
if b

then z := x+2
else z := y-5;

w := z-2

• What is w?
• Useful for optimization, error checking
• Zero analysis is a special case

15

Analysis of Software Artifacts -
Spring 2006

29

Constant Propagation Definition

• Constant lattice (LC, ⊑C, ⊔C, ⊥, ⊤)
• LC = Integer ⋃ { ⊥, ⊤ }
• ∀n∈Integer : ⊥ ⊑C n && n ⊑C ⊤

• Constant propagation lattice
• Tuple lattice formed from above lattice
• See notes on zero analysis for details

• Abstraction function:
• αC(n) = n
• αCP(η) = { x ↦ αC(η(x)) | x∈Var }

• Initial data:
• ιCP = { x ↦ ⊤ | x∈Var }

⊤

… -1 0 1 …

⊥

Analysis of Software Artifacts -
Spring 2006

30

Constant Propagation Definition

• ƒCP(σ, [x]k) = [tk↦σ(x)] σ
• ƒCP(σ, [n]k) = [tk↦n]σ
• ƒCP(σ, [x := […]n]k) = [x↦σ(tn)] σ
• ƒCP(σ, [[…]n op […]m]k) = [tk↦(σ(tn) op⊤ σ(tm))] σ

• n op⊤ m = n op m
• n op⊤ ⊤ = ⊤
• ⊤ op⊤ m = ⊤
• Note: we could define for ⊥ too, but we won’t

actually ever see ⊥ during analysis

• ƒCP(σ, /* any other */) = σ

16

Analysis of Software Artifacts -
Spring 2006

31

Constant Propagation Example
Simplified to the statement level

[x := 3]1;
[y := x+7]2;
if [b]3

then [z := x+2]4

else [z := y-5]5;
[w := z-2]6

Position Worklist x y z w
0 1 ⊤ ⊤ ⊤ ⊤

1 2 3 ⊤ ⊤ ⊤

2 3 3 10 ⊤ ⊤

3 4,5 3 10 ⊤ ⊤

4 6,5 3 10 5 ⊤

6 5 3 10 5 3
5 6 3 10 5 ⊤

6 3 10 5 3

Analysis of Software Artifacts -
Spring 2006

32

Constant Propagation Example
Simplified to the statement level

[x := 3]1;
[y := x+7]2;
if [b]3

then [z := x+1]4

else [z := y-5]5;
[w := z-2]6

Position Worklist x y z w
0 1 ⊤ ⊤ ⊤ ⊤

1 2 3 ⊤ ⊤ ⊤

2 3 3 10 ⊤ ⊤

3 4,5 3 10 ⊤ ⊤

4 6,5 3 10 4 ⊤

6 5 3 10 4 2
5 6 3 10 5 ⊤

6 3 10 ⊤ ⊤

