Dataflow Analysis, Continued

17-654/17-765
Analysis of Software Artifacts
Jonathan Aldrich

Analysis of Software Artifacts -
Spring 2006

Lattice g

« A lattice is a tuple (L, &, U, 1, T) =Mz
e L is aset of abstract elements / \
.+ Cisa partial order on L Z NZ
* Means at least as precise as \ /
* Uis the least upper bound of two 1
elements

* Must exist for every two elements in L
» Used to merge two abstract values

* 1 (bottom) is the least element of L
* Means we haven't yet analyzed this yet
* Will become clear later

* T (top) is the greatest element of L
* Means we don’t know anything

Analysis of Software Artifacts -
Spring 2006

Clarification: Least Upper Bounds g

e XUy=zIiff
e zis an upper bound of x and y
* XEzandyEz
e zisthe least such bound
 [OwlL suchthatxEwandy E wwe have zE w

* Also called a join

N
 Not a lattice / | \
e« Whatiscud? a b e
 a,b,and T are upper bounds | >< | |
* Assume C is transitive

c d f
* None is least upper bound \L/

Analysis of Software Artifacts - 3
Spring 2006

Zero Analysis Lattice g
* Integer zero lattice
e L,={L Z NZ MZ} T=MZ
- 1CZ 1ENZ NZEMZ, ZEMZ RN
1 E MZ holds by transitivity Z NZ
* U defined as join for E
e xuy=ziff \J_/

z is an upper bound of x and y
z is the least such bound
Obeys laws: 1UX =X, TUX=T, XUuXxX=X
Also Zu NZ=MZ
e 1=1
OX..1EX
e T=MZ
e [OX.XET

Analysis of Software Artifacts - 4
Spring 2006

Abstraction Function g

« Maps each concrete program state to a

lattice element
* For tuple lattices, the function can be
defined for values and lifted to tuples

 Integer Zero abstraction function a,:
© ay(0)=2Z
* ay(n)=NZ forallnz0
« Zero Analysis abstraction function a,, :

o az(f) = {x~ az(N¥) [xOVar }
« This is just the tuple form of a,,(n)
* Can be done for any tuple lattice

Analysis of Software Artifacts - 5
Spring 2006

Control Flow Graph (CFG) g

* Shows order of statement execution
* Determines where data flows

* Decomposes expressions into primitive

operations

* Crystal: One CFG node per “useful” AST node
constants, variables, binary operations, assignments, if,
while...

* Loops are written out
Form a loop in the CFG

* Benefit: analysis is defined one operation at a time

Analysis of Software Artifacts - 6
Spring 2006

Intuition for Building a CFG g

e Connect nodes in order of operation
* Defined by language

« Java order of operation

» Expressions, assignment, sequence
» Evaluate subexpressions left to right
» Evaluate node after children (postfix)
e While, If
» Evaluate condition first, then if/while
» if branches to else and then
» while branches to loop body and exit

Control Flow Graph Example g
while i*2 < 10 do
if X <i+2
thenx:=x+5

elsei=i+1

Analysis of Software Artifacts - 8
Spring 2006

Flow Functions g

Compute dataflow information after a
statement from dataflow information before

the statement
* Formally, map a lattice element and a CFG node
to a new lattice element

Expression flow functions
* Treat each expression as an assignment to a
temporary variable
X+3*y = t1=X; 1,:=3; 3=y, 1=) =t +H,
* That variable is used in containing expressions
* Instead of explicitly writing temporaries, we’ll keep
track of them by labeling nodes

[, + [131; * Taldls
Zero Analysis Flow Functions g

Fzalo, [4) = [t o(¥)] o
Jza(o; [n]y) = if n==0
then [t~Z]o
else [t,»NZ]o
fzalo, [x:= [Jnl) = X a(ty)] o

fza(a (.-]n op [Il = [te-MZ] o
* Could be more precise, e.g.

Fzalo [Jo + [Tl =
if dt]=Z && At |=Z
then [t~Z]o else [t~MZ]o

fza(o, [* any other */) = o

Analysis of Software Artifacts - 10
Spring 2006

Zero Analysis Example

X :=0;
while x > 3 do
X :=X+1

Analysis of Software Artifacts -
Spring 2006

11

Zero Analysis Example

Initial dataflow
g ={x»MZ|xOVar}

Intuition:

We know nothing about
initial variable values. We
could use a precondition if
we had one.

Analysis of Software Artifacts -
Spring 2006

12

Zero Analysis Example g

o ={x»MZ|xOVar}

0, = fza(a, [X])
=[ty>o(¥)] g
=[t,~MZ] g
=0

Fza(or X)) = [teaX¥)] o

Zero Analysis Example g

o ={x»MZ|xOVar}
0, =0

0, = fza(ay, [0])
[t,~Z] o
=[t,~Z] g

Jza(o [N]) =
if n==
then [t~Z]o
else [t~NZ]o

Analysis of Software Artifacts - 14
Spring 2006

Zero Analysis Example g

o ={x»MZ|xOVar}
g, =[t,»Z] g

g3 = f7a(0, [[X]; =] 10]0)
=[x~ oy(t)] o
= [x~Z] g,
= [x-Z,t,»Z] g

Fzalo x=[...1 00 =

alt)] o
Zero Analysis Example g

o ={x»MZ|xOVar}
gy =[x-Z, t,»Z] g

Input to [x], comes from
[:=]s and [:=];,
Input should be g;u g3,
What is g;,?
Solution: assume L
Benefit: a;u L = oy
Same result as ignoring
back edge first time

Analysis of Software Artifacts - 16
Spring 2006

Zero Analysis Example

g ={x»MZ|xOVar}

oy =[xmZ,t-7] g
Oy =1

0, = fza(osU 0y, [X]4)
Jzalosu L, [X],)
Fza(05 [X14)

= [ty o5(X)] o5

= [t,»2] o5

Fza(0, M) = [k aX)] o

Analysis of Software Artifacts -
Spring 2006

17

Zero Analysis Example

g ={x~»MZ|xOVar}
oy =[xmZ,t-7] g
Opp =L

g =[tp7] o

O5 = fza(04 [35)
= [ts~NZ] g,
= [ts~NZ, t,-Z] oy

Fzalo; [N]) =
if n==0
then [t~Z]o
else [t~NZ]o

Analysis of Software Artifacts -
Spring 2006

18

Zero Analysis Example

g ={x»MZ|xOVar}
02’) = [XHZ, tZHZ] q
Op =41

05 [ts~NZ, t,~Z] o3

G = f2a(0%, [<6)
=05
= [ts~NZ, t,~Z] oy

fzalo; ¥ any other */) = o

Analysis of Software Artifacts -
Spring 2006

19

Zero Analysis Example

g ={x~»MZ|xOVar}
02’) = [XHZ, tZHZ] q
Op =41

G5 = [ts~NZ, t,~27] o

Skipping similar nodes...

Analysis of Software Artifacts -
Spring 2006

20

10

Zero Analysis Example

g ={X-MZ|xOVar}
oy =[xmZ,t-7] g
O, =1

O = [tyrZt,oNZ,..] 0,

11 = f2a(010, [l Jo + [--J10l11)
= [t;,~MZ] gy

Fzalo []n op []l = [t-MZ] o

Analysis of Software Artifacts -
Spring 2006

21

Zero Analysis Example

g ={X-MZ|xOVar}
oy =[xmZ, t-7] g
O, =1

Oy = [tyZ, - NZ t,»MZ,. o,

01, = fza(011 [Xlg:=[--]2 10)
=[x 0y4(t0)] 011
= [x»MZ] o0y,
= [x~»MZ,...] 4

Fza(0 D= []l =
[x-a(t)] o

Analysis of Software Artifacts -
Spring 2006

22

11

Zero Analysis Example g

g ={X-MZ|xOVar}

oy =[xmZ,t-7] g
O, = [xmMZ,...] o4

0, = fza(o3U 0y, [X]4)
= fza((x~MZ]ay, [X],)
= [t - MZ] 53] [x-MZ1
= [t,»MZ, x-=MZ] o

F2a(0, M) = [k aX)] &

Analysis of Software Artifacts - 23
Spring 2006

Zero Analysis Example g

g ={X-MZ|xOVar}

oy =[xmZ, t-7] g
O, = [x~MZ,...] o4

Propagation of x—»MZ continues

0,, does not change, so no need to
iterate again

Analysis of Software Artifacts - 24
Spring 2006

12

Worklist Dataflow Analysis Algorithm g

worklist = new Set();

for all node indexes i do
resultsfi] = L,; Ok to just add entry node

results[entr] = ,; if flow functions cannot

worklist.add(all nodes):; / return L, (examples will
' ' assume this)

while (worklist.isEmpty()) do

i = worklist.pop();

fore = | .\ results[K]: Pop removes the most
before = Ly qpred()) [K] recently added element

after = f(before, node())); from the set (performance
if (!(after C results[i])) optimization)
results[i] = after;
for all kOsucc(i) do
worklist.add(k);

Analysis of Software Artifacts -
Spring 2006

25

Example of Worklist

Simplified to the statement level

&K

[a = 0]1 Position Worklist a b
0 1 MZ MZ
[b:=0], 1 2 Z MZ
, 2 3 z z
while [a<2];do § 4.6 2 2
[b = a]4; 4 5,6 z z
5 3,6 MZ Z
[a:=a+1];; 3 4,6 MZ Z
o 4 5,6 MZ MZ
[a:=0Jg 5 3,6 MZ MZ
3 4,6 MZ MZ
Control Flow Graph 4 6 MZ MZ
6 z MZ

1—2—3——6

4—5

Analysis of Software Artifacts -
Spring 2006

26

13

Worklist Algorithm Performance g

* Performance
* Visits node whenever input gets less precise
e up to h =height of lattice
* Propagates data along control flow edges
* up to e = max outbound edges per node
* Assume lattice operation cost is 0
* Overall, O(h*e*0)
e Typically h,0,e bounded by n = number of statements in
program
e O(n®) for many data flow analyses
e O(n?) if you assume a number of edges per node is small
* Good enough to run on a function
» Usually not run on an entire program at once, because n
is too big

Analysis of Software Artifacts - 27
Spring 2006

Constant Propagation g

* Goal: determine which variables hold a
constant value:

X:=3;
y = X+7,;
ifb
then z ;= x+2
else z := y-5;
w:=2z-2

* Whatis w?
 Useful for optimization, error checking
» Zero analysis is a special case

Analysis of Software Artifacts - 28
Spring 2006

14

Constant Propagation Definition g

_ T
Constant lattice (L, Ec, Ug, L, T)//\\\

e Lc=Integeru{i, 1} -1 0 1
e OnOinteger: LE.N&&NELT \\\/
Constant propagation lattice L

* Tuple lattice formed from above lattice
* See notes on zero analysis for details

Abstraction function:
e az(n)=n
o acp(]) ={x~ ac(77(x) | xOVar }

Initial data:
Lep = { X+~ T |xOVar }

Analysis of Software Artifacts - 29
Spring 2006

Constant Propagation Definition g

fep(a [Xl) = [tymo(X)]

fep(a; [ny) = [te-n]o

fer(o [X:= [1)) = x-olty)] 0

fCP(O; [[]n Op []m]k) - [tk'_)(a(tn) OpT a(tm))] g

* nop.m=nopm

o n OpT T=T

e TOp, M=T

e Note: we could define for L too, but we won't
actually ever see L during analysis

fcp(o, I* any other */) = o

Analysis of Software Artifacts - 30
Spring 2006

15

Constant Propagation Example

Simplified to the statement level

&K

[X = 3]1; Position Worklist X y z w
v 9 b LT
if [b], 2 3 3 10 Tt T
then [z .= x+2], 3 4,5 3 10 T 7
dkelz=ySl {3 190F
[w = z-2]g 5 6 3 10 5
6 3 10 5 3
Analysis of Software Artifacts - 31
Spring 2006
Constant Propagation Example
Simplified to the statement level
[X = 3]1; Position Worklist X y z w
y=xr; o 9 b T T
if [b], 2 3 3 10 Tt T
then [z := x+1], 3 4,5 3 10 T 7
—y.c] - 4 6,5 3 10 4 T
gl_se [z = y-5l;; 6 5 3 10 4 2
[w = z-2]g 5 6 3 10 5
6 3 10 T
Analysis of Software Artifacts - 32
Spring 2006

16

