Statistical Debugging

Benjamin Robert Liblit. Cooperative Bug Isolation. PhD
Dissertation, University of California, Berkeley, 2004.

ACM Dissertation Award (2005)

Thomas D. LaToza
17-654 Analysis of Software Artifacts

Despite the best QA efforts software
will ship with bugs

Why would software be released with bugs?

Despite the best QA efforts software
will ship with bugs

Why would software be released with bugs?
Value in getting user feedback early (betas)
Value in releasing ahead of competitors
Value in releasing to meet a planned launch date
Bug doesn’t hurt the user all that much

Even with much better analysis, will likely be attributes or problems hard to
assure for some time

=> Free(1) testing by users!
With real test cases (not the ones developers thought users would experience)

By many users (might even find realli rare buisi
Internet Explorer

Internet Explorer has encountered a problem and needs /28
to close. We are sony for the inconvenience.

Result: Ifyou were: in the middle of something. the infarmation you wers werking o
. rright belast

Send Error Repol’t D|alog Please tell Microsoft abaut this problem.

We have created an emor report that you can send to help us improve
Intemet Explorer. We willtreat this report as confidential and anonymovs

Ta see what data this enmor report contains, click here.

Sond Evor et

(1) For company writing software, not users....

Bugs produced by error reporting tools must
be bucketed and prioritized

Company (e.g. Microsoft) buckets traces into distinct bugs
Automated tool takes stack trace and assigns trace to bug bucket
Bug buckets: count of number of traces, stack trace for each

All bugs are not equal — can make tradeoffs
Automated test coverage assumes all bugs are equal

Bugf that corrupts Word docs, resulting in unrecoverable work, for 10%
of users

Unlikely bug that causes application to produce wrong number in Excel
spreadsheet

Limited time to fix bugs — which should you fix?

Frequency of bug (how many users? How frequently per user?)
Importance of bug (what bad thing happened?)

But there are problems with the
standard bug submission process

User hits bug and program crashes

Program (e.g. Microsoft Watson) logs stack trace
Stack trace sent to developers

Tool classifies trace into bug buckets

Problems
WAY too many bug reports => way too many open bugs
=> can'’t spend a lot of time examining all of them
Mozilla has 35,622 open bugs plus 81,168 duplicates (in 2004)

Stack trace not good bug predictor for some systems (e.g. event based
systems)
= bugs may be in multiple buckets or multiple bugs in single bucket

Stack trace may not have enough information to debug
=> hard to find the problem to fix

What's wrong with debugging from a stack
trace?

main ()
exif data_save_datal()
exif data save_data_content ()
exif data_save_data_content ()
exif data_save_data_entry()
exif mnote data_ save ()
exif mnote_data_canon_save ()

memepy () CRASH HERE SOMETIMES

// snippet of exif mnote_data_canon_save ()
for (i = 0; i < n—>count; i++) {

memcpy (*buf + doff, n->entries[i].data, s); CRASH HERE SOMETIMES

} Scenario A — Bug assigned to bucket using stack trace
What happens when other bugs produce crash with this trace?
Scenario B — Debugging
Seems to be a problem allocating memory
Where is it allocated?
Not in any of the functions in the stack trace....
Arg...... It's going to be a long day..... 7

Statistical debugging solves the problem -
find predicates that predict bug!

main () Extra methods!
exif loader_get_data()
exif_data_load_data()
exif mnote_data_canon_load() (o + s > buf_size) strong predictor
exif_data_save_datal)
exif_data_save_data_content ()
exif data_ save_data_content ()
exif data_save_data_entry()
exif _mnote_data_save ()
exif mnote_data canon_save ()

memepy () CRASH HERE SOMETIMES

// snippet of exif mnote_data_canon_load()
for. (i = 0; 1 < ¢; i++) {
n->count = i + 1;

if (o + s > buf_size) return; (o + s > buf_size) strong predictor

n->entries[i].data = malloc(s);

The goal of statistical debugging

Given set of program runs
Each run contains counters of predicates sampled at program

points
Find
1. Distinct bugs in code — distinct problems occurring in program
runs

2. For each bug, predicate that best predicts the bug

Statistical bugging technique sends @ ™o suonomenrraee
reports for failing and successful runs :

Program runs on user computer
Crashes or exhibits bug (failure)
Exits without exhibiting bug (success)

Not sure what to do? Click here to leam more.

Counters count # times predicates hit oo

Counters sent back to developer for failing and successful runs

Statistical debugging finds predicates that predict bugs
100,000s to millions of predicates for small applications
Finds the best bug predicting predicates amongst these

Problems to solve
Reports shouldn’t overuse network bandwidth (esp ~2003)
Logging shouldn't kill performance
Interesting predicates need to be logged (fair sampling)
Find good bug predictors from runs
Handle multiple bugs in failure runs

10

Deployment and Sampling

11

OSS users downloaded binaries submitting
statistical debugging reports

1200 T

i
I Evolution
I Gaim
[The GIMP|
1000 [Gnumeric
[Nautilus
I Rhyihmboj
N SPIM |

800 -

Number of Reports

JEIGB Oct03 Jan04 Apr04 Julo4 Oct04 Jan05
Time Period
Reports per month
Small user base ~ 100??
And only for small applications
Got press on CNet, Slashdot in Aug 2003 12

Data collected in predicate
counters

Fundamental predicates sampled on user computer

“x <y on line 319 of utils.c” was observed to be true 25 times
“x=yonline 319 of utils.c” was observed to be true 3 times, and

“x >y on line 319 of utils.c” was observed to be true 1 time.

Infer predicates on developer’s computer from fundamental predicates

“x >y on line 319 of utils.c” would have been observed to be true 3 41

times,
“x # yon line 319 of utils.c” would have been observed to be true 25 + 1
tumes, and

“x < y on line 319 of utils.c” would have been observed to be true 2543

times.

13

Predicates sampled at distinguished
instrumentation site program points

Branches
if (condition) while(condition) for(; condition ;)
Predicates — condition, !condition

Function entry
Predicate - count of function entries

Returns
Predicates —retVal < 0, retVal = 0, retvVal > 0

Scalar pairs — assignment
X=y
Predicates x > z, x < z, x = z for all local / global variables z in scope

14

Sampling techniques can be
evaluated by several criteria

Minimize runtime overhead for user
Execution time
Memory footprint

Sample all predicates enough to find bugs
Maximize number of distinct predicates sampled
Maximize number of times predicate sampled

Make sample statistically fair — chance of sampling each
instrumentation site each time encountered is the same

15

What's wrong with conventional
sampling?

Approach 1: Every n executions of a statement
Approach 2: Sample every n statements

{
if (counter == 100) { check(p != NULL); counter++}
p = p->next

if (counter == 100) { check(i < max); counter++}
total += sizes]i]

}
Approach 3: Toss a coin with probability of heads 1/100 (“Bernoulli trial™)
{
if (rnd(100) == 0) { check(p != NULL); counter++}
p = p->next

if (rnd(100) == 0) { check(i < max); counter++}
total += sizes]i]
}
17

Instead of testing whether to sample at every instrumentation
site, keep countdown timer till next sample

Consider execution trace — at each instrumentation site

If 0, came up tails and don't sample

If 1, came up heads and sample predicates at instrumentation site
Let the probability of heads (sampling) be p=1/5

i {0(0)0/0,0/1,0,0,0,1, 0,1,0,0,1,...}
Example execution trace \ v - % /

Time till next sample

Idea — keep countdown timer till next sample instead of generating each time

How to generate number to countdown from
to sample with probability p = 1/5 at every instrumentation site?

18

Instead of testing whether to sample at every instrumentation
site, keep countdown timer till next sample

Consider execution trace that hits list of instrumentation sites

If 0, came up tails and don't sample

If 1, came up heads and sample predicates at instrumentation site
Let the probability of heads (sampling) be p=1/5

i {0,0,0,0,0,1,0,0,0,1, 0,1,0,0,1,...}
Example execution trace ’ . . %)

Time till next sample
What's the probability that the next sample is at ?

Time t: (1/5)

Time t+1 (4/5) * (1/5)
Time t+2 (4/5)"2 * (1/5)
Time t+3 (4/5)"3 * (1/5)
Time t+k (4/5)"k * (1/5)

=>p * (1 - p)"k => Geometric distribution
Expected arrival time of a Bernoulli trial

19

Generate a geometrically distributed
countdown timer

=>p * (1 - p)"k => Geometric distribution
Expected arrival time of a Bernoulli trial

When we sample at an instrumentation site
Generate counter of instrumentation sites till next sample
Using geometric distribution

At every instrumentation site
Decrement counter
Check if counter is 0
If yes, sample

=Achieve “statistically fair" sampling without overhead of random number
generation at each instrumentation site

20

Yet more tricks - instead of checking countdown
{ every sample, use fast & slow paths
if (countdown > 2) {
/* fast path: no sample ahead */
countdown -= 2;
P = p->next;
total += sizes[i];
} else {
/* slow path: sample is imminent */
1f (--countdown == 0) {
check (p != NULL) ;
countdown = getNextCountdown () ;
}
P = p->next;
if (--countdown == 0) {
check (i < max) ;
countdown = getNextCountdown () ;
}
total += sizes[i];
}
1
More to do to make it work for loops and procedure calls
Doubles memory footprint 1

branches returns

Small benchmark

programs = =
& S
FORE 1 e =
bh = N =
§ o
T R :
1sort B oAb g
Zz Z
compress
0 0
em3d Always 1710 1/100 1/1,000 /10K Always /10 1/100 171,000 /10K
Sampling Rate Sampling Rate
health
1Jpeg b scalar—pairs branches + returns + scalar—pairs
11
mst o 10 o
S S
perimeter RN g
g s £
5(-
ower g o
P Eoa 2
[g
treeadd Z 2 z
1
0 0
Tsp Always /10 1/100 1/1,000 /10K Always 1710 1/100 1/1,000 /10K
Sampling Rate Sampling Rate
vortex

Figure 2.2: Benchmarks meeting performance goals in typical configuration: overhead <

5% (M), overhead < 10% (M), and overhead < 15% ()

Built a technique for sampling predicates cheaply!

How do we find bugs?

Statistical debugging

Predicate counters ->
bugs & bug predictors

23

There are several challenges from going from
predicate counters to bugs and predictors

Feedback report R:
(x>y) at line 33 of util.c 55 times
... 100,000s more similar predicate counters

Label for report
F — fail (e.g. it crashes), or S succeeds (e.g. it doesn't crash)

Challenges
Lots of predicates — 100,000s

Bug is deterministic with respect to program predicate
iff given predicate, bug must occur
predicate soundly predicts bug
Bugs may be nondeterministic & only occur sometimes

All we have is sampled data
Even if a predicate deterministically predicts bug
We may not have sampled it on a particular run

=> Represent everything in probabilities rather than deterministic abstractions
Instead of e.g. lattices, model checking state, Daikon true invariants, ...

24

11

Notation

Uppercase variables denote sets; lower case denotes item in set
P — set of fundamental and inferred predicates

R — feedback report
One bit — succeeded or failed
Counter for each predicate p in P

R(p) — counter value for predicate p in feedback report R
R(p) > 0 — saw predicate in run
R(p) = 0 — never saw predicate in run

R(S) — counter value for instrumentation site S in feedback report R
Sum of R(p) where p is sampled at S

B — bug profile — set of feedback reports caused by a single bug
Failing runs may be in more than one bug profile if they have more than one bug

p is predictor iff R(p) >0 ~>R in B
Where ~> means statistically likely

Goal : find minimal subset A of P such that A predicts all bugs; rank importance of pin A
Looking at this predicate will help you find a whole bunch of bugs!

Approach
Prune away most predicates — totally irrelevant & worthless for any bug (98 — 99%) — really quickly
Deal with other predicates in more detail

Deterministic bug example

Assume R(S) > 0 for all sites — i.e. all sites observed for all runs

R1: Succeeds (x>5)at3562:R(P)=23 (y>23)at1325:R(P)=0
R2: Fails (x>5)at3562: R(P)=13 (y>23)at1325:R(P)=5

R3: Succeeds (x> 5) at 3562 : R(P) =287 (y > 23) at 1325: R(P) =0

Intuitively
Which predicate is the best predictor?

26

12

Approach 1 — Eliminate candidate
predicates using strategies

Universal falsehood
R(P)=0onall runs R
It is never the case that the predicate is true

Lack of failing coverage
R(S) = 0 on all failed runs in R
The site is never sampled on failed runs

Lack of failing example
R(P) = 0 on all failed runs in R
The predicate is not true whenever run fails

Successful counterexample
R(P) > 0 on at least one successful runin R
P can be true without causing failure
(assumes deterministic bug)

=>Predictors should be true in failing runs and false in succeeding runs

27

Problems with Approach 1

Universal falsehood
R(P)=0onall runs R
It is never the case that the predicate is true

Lack of failing coverage
R(S) =0 on all failed runsin R
The site is never sampled on failed runs

Lack of failing example
R(P) =0 on all failed runsin R
The predicate is not true whenever run fails

Successful counterexample
R(P) > 0 on at least one successful runin R
P can be true without causing failure
(assumes deterministic bug)

Assumes
Only one bug
May be no deterministic predictor for all bugs
At least one deterministic predictor of bug
Even a single counterexample will eliminate predicate
If no deterministic predictor, all predicates eliminated

28

13

lterative bug isolation and
elimination algorithm

1. Identify most important bug B
Infer which predicates correspond to which bugs
Rank predicates in importance

2. Fix B and repeat
Discard runs where R(p) > 0 for chosen predictor

2 increases the importance of predictors of less frequently bugs (occur
in less runs)

Combination of assigning predicates to bugs and discarding runs
handles multiple bugs!

29

How to find the cause of the most
important bug?

Consider the probability that p being true implies failing run
Denote failing runs by Crash
Assume there is only a single bug (for the moment)

Fail(P) = Pr(Crash | P observed to be true)

Conditional probability
Given that P happens, what's probability of crash

Can estimate Fail(P) for predicates
Fail(P) = F(P) / (S(P) + F(P))
Count of failing runs / (Count of all runs)

Not the true probability
it's a random variable we can never know
But something that helps us best use observations to infer probability

30

14

What does Fail(P) mean?

Fail(P) = Pr(Crash | P observed to be true)

Fail(P) < 1.0
Nondeterministic with respect to P
Lower scores -> less predictive of bug

Fail(P) = 1.0
Deterministic bug
Predicate true -> bug!

31
£ = s500f (a)
if (f == NULL) { (b)
x = 0; (c)
*f; (d)
}
Consider
Predicate (f == NULL) at (b)
Fail(f == NULL) = 1.0
Good predictor of bug!
Predicate (x == 0) at (c)
Fail(x ==0) = 1.0 too!
S(X ==0) =0, F(X ==0) > 0 if the bug is ever hit
Not very interesting!
Execution is already doomed when we hit this predicate
Bug has nothing to do with this predicate
Would really like a predicate that fails as soon as the execution goes wrong
32

15

Instead of Fail(P), what is the
increase of P?

f= ... (a)
if (f == NULL) { (b)
x = 0; (c)
*f; (d)

}

Given that we've reached (c)
How much difference does it make that (x == 0) is true?
None — at (c), probability of crash is 1.0!

Fail(P) = Pr(Crash | P observed to be true)
Estimate with
Fail(P) = F(P) / (S(P) + F(P))

Context(P) = Pr(Crash | P observed at all)
Estimate with
Context(P) = F(P observed) / (S(P observed) + F(P observed)

33

Instead of Fail(P), what is the
increase of P?

f= ... (a

if (f == NULL) { (b
X = 0; (c
WiEP (d

}

Context(P) = Pr(Crash | P observed at all)

Estimate with
Context(P) = F(P observed) / (S(P observed) + F(P observed)

Increase(P) = Fail(P) — Context(P)
How much does P being true increase the probability of failure vs. P being observed?
Fail(x == 0) = Context(x ==0) = 1.0
Increase(X==0)=1.0-1.0=0!

Increase(P) < 0 implies the predict isn't interesting and can be discarded
Eliminates invaraints, unreachable statements, other uninteresting predicates
Localizes bugs at where program goes wrong, not crash site
So much more useful than Fail(P)!

34

16

Instead of Fail(P), what is the
increase of P?

f= ... (a)
if (f == NULL) { (b)
x = 0; (c)
*f; (d)

}
Increase(P) = Fail(P) — Context(P)

But Increase(P) may be based on few observations
Estimate may be unreliable

Use 95% confidence interval
95% chance that estimate falls within confidence interval

Throw away predicates where this interval is not strictly
above 0

35

Statistical interpretation of
Increase(P) is likelihood ratio test

One of the most useful applications of statistics

Two hypotheses

1. Null Hypothesis: Fail(P) <= Context(P)
Alpha <= Beta

2. Alternative Hypothesis: Fail(P) > Context(P)
Alpha > Beta

Fail P and Context P are really just ratios
Alpha = F(P) / F(P observed)
Beta = S(P) / S(P observed)

LRT compares hypotheses taking into account uncertainty from number
of observations

36

17

Thermometers diagrammatically
illustrate these numbers

Length: log(# times P observed)

Context(P Lower bound iz 0 S(P)
& on Increase(P) ~ confidence
from confidence interval

interval
- How many times
How often true? ~ Minimally, Howmuch i predicate true
how helpful? uncertainty?

with no bug?

Usuually small => tight interval
37

But also true a lot
pn nonfailing runs

Table 4.2: Moss failure predictors sorted by F(P)

Predicates true the Thermometer | Context Increase S | F F+S Predicate

HA B | 0176 0007+0012 22554 | 5045 27599 files|filesindex].language != 15
nost on falllng TUNSm——| 1% 00070012 22566 | 5045 27611 tnp == 0 is FALSE
[— 0.176 0007+£0012 22571 | 5045 27616 strcmp 0
| E— 0.176 0.007+0013 18894 | 4251 23145 tmp == 0 is FALSE
-, 0176 00070013 18885 | 4240 23125 files(filesindex].language != 14
- J 0.176 0.008£0.013 17757 | 4007 21764 filesindex >= 25
- | 0177 0.008+0014 16453 | 3731 20184 M <M
_— | 0176 02610023 4800 | 3716 8516 config.winnowing window_size != argc
[E— 0177 001240014 15325 | 3567 18892 i > 21
[0131 0018+0012 17846 | 3125 20971 token_sequence [token_index].lineno <= token_index
[E— 0.176 0.077+£0.018 9136 | 3104 12240 tmp == 0 is FALSE
[E— 0.176 0077+0018 9126 | 3095 12221 files[filesindex].language >= 14
| E— 0131 0.021£0013 17256 | 3092 20348 token_index > lineno
| | 0129 0.021£0.012 17589 | 3084 20673 1 >= lineno
| — 0131 0023+0013 16895 | 3060 19955 token_sequence [token_index].lineno < token_index
| — 0.176 0.020+0015 12550 | 3056 15606 filesindex > 30
| E— 0.115 0.008+0011 21431 | 2985 24416 passage_index > yy_start
- 0176 00210016 11967 | 2935 14902 i > 24
m 0112 0007+0011 21403 | 2894 24297 min_index > yy_start
| | | 0.110 0007£0011 21322 | 2826 24148 min_index > yy_start
u I 0.135 0021£0.013 14493 | 2677 17170 fin > fin
L] 176 0.199+0024 4332 | 2595 6927 config.winnowing_window_size < arge
. 0176 03980030 1924 | 2592 4516 i>=8
[| 0176 03980030 1924 | 2592 4516 i>=6
[176 0398+0030 1924 | 2592 4516 1 »=2
. 0176 0.398£0.030 1924 | 2592 4516 1 >=4
| 0176 0.398 £0.030 1924 | 2592 4516 i >=9
| | 0.107 0.010+£0011 19385 | 2585 21970 (p + passage_index)->last_line <= filesindex
| E— 0107 0.006+0011 20119 | 2578 22697 (p + passage_index)->last_line < last
| E— 0.114 0011£0012 18046 | 2577 20623 (p + passage_index)->last_line <= filesindex
| I— 107 0011+£0011 19081 | 23568 21649 (p + passage_index)->last_line < filesindex
| E— 0107 0.007£0011 19975 | 2568 22543 (p + passage_index)->first line < fileid
| I 0129 0010+0013 15906 | 2556 18462 i > 28
u | 0.114 001240012 17613 | 2551 20164 (p + passage_index)->last_line < filesindex
u | 0116 0027+£0013 15100 | 2517 17617 i > lineno
u 1 0.116 0025+0013 15175 | 2506 17681 start > lineno
| 0.114 0008£0012 17862 | 2491 20353 (p + passage_index)->first_line < fileid
| — 0115 0009+0012 17554 | 2480 20034 (p + passage_index)->first line < last
m 0.107 0064+0014 11962 | 2464 14426 (p + passage_index)->First_line <= i

2701 additional predictors follow

18

Table 4.3: MOSS failure predictors sorted by Increase(P)

. . Thermometer ‘ Context Increase S ‘ ¥ F+8S Predicate
Highest increase(P) - -
_ - 0.065 093540019 0 3 3 ((*(fi + 1)))->this.last_token < filesbase
red bar) relative - 0,065 0.935+0020 0| 10 10 ((*(fL + 1)))->other.last_line == last
.] 0071 0929+0.020 0 18 18 ((*(fi + i)))->other.last_line == filesbase
TO tOtal ﬂumbel’ Of times m= 0073 0927+0.020 0 0 10 ((*(fi + i)))->other.last_line == yy_n_chars
- 0071 0929+0028 0| 19 19 Dbytes <= fileshase
Observed (length)] 0075 092540022 0| 14 14 ((*(fL + 1)))->other.first_line == 2
] 0076 0924 £0.022 0 12 12 ((*(fi + 1)))->this.first_line < nid
- 0077 09230023 0| 10 10 ((*(fi + 1)))->other.last_line == yy_init
’ H (] 0.080 0920+£0.023 0 10 10 ((*(fi + i)))->other.last_line == yy_n_chars
BUt they don t predICt (=] 0.080 0.920 £0.023 0 12 12 ((*(fi + 1)))->other.last line == numlines_other
=) 0.081 09190023 0| 12 12 ((*(fL + 1)))->this.last_line == lineno
many bUgS. e (| 0.082 0918+£0024 0 10 10 ((*(fi + i)))->this.last_line <= yy_start
(| 0.082 0918+£0.024 0 11 11 ((*(fi + 1)))->this.last_line == htmlscope
] 0085 09150023 0| 11 11 ((*(fi + i)))->this.first_line < 7
(] 0.085 09150024 0| 10 10 ((*(fi + 1)))->other.last_line == lineno
(] 0.087 09134+0.025 0 12 12 ((*(fi + i)))->other.last_line < yy_start
| 0.087 0913£0.024 0 14 14 ((*(fi + 1)))->other.first line < 3
- 0.091 09090025 0| 10 10 ((*(fL + 1)))->this.last_line <= 1
|) 0100 0900+£0.009 0 | 526 526 yy_start == 17
[0.100 0900 £0.009 0 | 503 503 yy_start > 16
I 0101 0899+0009 0 | 522 522 yy_start » 11
[0114 08860007 0| 66 66 last > 500
|) 0.115 088540007 0 67 67 first » 500
(=) 0117 08830011 0| 79 79 ((*(fi + 1)))->other.last_token <= fileshase
I 0116 0.883+0012 1 | 769 770 ({*{fi + i)))->other.last_line == yy_start
() 0118 0.882+0.011 0 22 22 ((*(fi + 1)))->this.last_token filesbase
] 0116 08830012 1 | 774 775 ({*(fi + 1)))->this.last_line == 1
N 0116 0.883+0012 1 | 776 777 ((*(fi + i)))->other.last_line == yyleng
) 0118 0.882+0.011 0 13 3 ((*(fi + i)))->other.last_line > pindex
I 0118 08810012 1 | 769 770 ((*(fi + 1)))->this.last_line < 2
I 0.118 0.881 £0.012 1 771 772 ((*(fi + 1)))->this.last_line == yy_start
| 0118 08810012 1 | 772 773 ((*(fi + 1)))->other.last_line ==
| | 0118 0880+0012 1 | 776 777 ((*(fi + i)))->other.last_line < 2
W 0.118 08800013 2| 772 774 ((*(fi + 1)))->this.last_line == yyleng
[0124 08760008 0 | 384 384 config.language == 17
I 0124 0876+£0.008 0 | 391 391 config.language > 16
I 0.117 0876 £0.016 6 | 781 787 ((*(fi + 1)))->this.last_line == diff
| B 0116 0.875+0017 7 | 784 791 ((*(fi + i)))->other.last_line == diff
[S| 0131 0869+£0.008 0 | 633 633 files[fileid].size < token_index
... 2701 additional predictors followo i

importance?

Approach 1 — Importance(P) = Fail(P)
failing runs for which P is true
Maximum soundness — find lots of bugs!
May be true a lot on successful runs

Large white bands

Approach 2 — Importance(P) = Increase(P)
How much does P true increase probability of failure?
Large red bands
Maximum precision — very few false positives!
Number of failing runs is small
Sub bug predictors — predict subset of a bug’s set of failing runs

Large black bands

How do we rank bugs by

19

How do we balance precision and
soundness in this analysis?

Information retrieval interpretation
Recall / precision

Soundness = recall
Match all the failing runs / bugs!

Preciseness = precision
Don’'t match successful runs / no bug!

Information retrieval solution — harmonic mean
2

Importance(P) = ;

1
Increase(P) + log(F(P))/log(NumF)

41

Table 4.4: Moss failure predictors sorted by harmonic mean
Thermometer | Context Increase S | F F+S Predicate
. 0176 0.824+0.009 0| 1585 1585 files[filesindex].language > 16
O 0176 0.824+0.009 0| 1584 1584 stremp > 0
O 0.176 0.8240.009 0| 1580 1580 stremp ==
I 0.176 0.824£0.009 0 | 1577 1577 files[filesindex].language ==
— 0176 0.824+0.009 0| 1576 1576 tmp == 0 is TRUE
I 0176 0.824+0.009 0| 1573 1573 stremp > 0
— 0.116 0.883+0.012 1| 774 775 ((*(fi + 1)))->this.last_line == 1
— 0.116 08830012 1| 776 777 ((*(fi + 1)))->other.last_line -- yylengq
| 0111 0.83240.027 73 | 1203 1276 config.match_comment is TRUE
E—— 0.116 0.883£0.012 1| 769 770 ((*(£i + i)))->other.last line == yy start
— 0.118 0.880+0.012 1 176 777 ((*(fi + i)))->other.last_line < 2
— 0118 0.881+0012 1 772 773 ((*(fi + 1)))->other.last_line ==
— 0118 0.881+0.012 1 7 772 ((*(fi + 1)))->this.last_line == yy_start
e 0.118 0.881+0.012 1| 769 770 ((*(fL + 1)))->this.last_line < 2
| | 0118 0.880+0.013 2| 772 774 ((*(fi + 1)))->this.last_line == yyleng
| S| 0.117 0.876+0.016 6 | 781 787 ((*(fi + i)))->this.last_line == diff
) 0.116 0.875£0.017 7| 784 791 ((*(fi + i)))->other.last_line == diff
[] 0.115 0866+0021 16 | 826 842 ((*(fi + i)))->other.last_line <= 3
A 0.117 0855+0024 25 | 864 889 ((*(fi + i)))->this.last line <= 4
— 0131 0810£0026 79 | 1258 1337 token sequence [token index].val >= 100
I 0118 086340021 15 | 798 813 ((*(fi + 1)))->other.last_line <= 2
— 0.118 086540021 14 | 787 801 ((*(fi + 1)))->this.last_line <= 2
M 0116 085140026 30 | 862 892 ((*(fi + 1)))-»other.last_line <= 4
I 0.118 0.855+0.025 22 776 798 ((*(fi + i)))->this.last line == nextstate
[=] 0.131 0.859+0.016 7 711 718 token_index > 500
I 0131 0.869+0.008 0 639 639 files[fileid].size < token_count
I 0.119 0.8494+0.027 26 79 805 ((*(fi + 1)))->other.last_line == nextstate
— 0131 0.869+0.008 0| 633 633 files(fileid].size < token index
| S| 0100 0.9000.009 0| 526 526 yy_start == 17
I 0101 0.899+0.009 0| 522 522 yy_start > 11
[] 0117 0.844+0028 k3 794 826 config.match_comment is TRUE
| =) 0118 082940031 49 | 876 925 ((*(fi + i)))->this.last_line < nid
[0 0115 07960032 115 | 1171 1286 (p + passage_index)->last_line < 2
— 0100 0.900+0.009 0| 503 503 yy start > 16
E— 0117 08280031 52 | 879 931 ((*(fi + i)))->other.last_line < nid
E— 0116 083940030 37 | 794 831 ((*(fi + i)))->other.last line <= diff
E— 0117 0840+0030 36 | 788 824 ((*(fi + 1)))->this.last _line <= diff
| 0.116 0818+0033 65 | 914 979 ((*(fi + 1)))->this.last_line < 8
— 0118 0833+0031 40 | 778 818 ((*(fi + 1)))->this.last_line <= mextstate

2701 additional predictors follow 42

20

Statistical Debugging Algorithm

1. Rank predicates by Importance.

2. Remove the top-ranked predicate P and discard all runs R (feedback reports) where

R(P) > 0.

3. Repeat these steps until the set of runs is empty or the set of predicates is empty.

Runs Predicate Counts
Lines of Code Successful Failing Sites Initial Increase >0 Elimination
Moss 6.001 26,299 5.598 35223 202,998 2.740 21
CCRYPT 5,276 20,684 10316 9.948 58,720 50 2
BC 14,288 23,198 7.802 50.171 298.482 147 2
RHYTHMBOX 56,484 12,530 19431 145176 857384 537 15
EXIF 10,588 30,789 2211 27.380 156.476 272 3

43

Questions

« How much better is this than release build
asserts? How many of these predicates
would never have been added as asserts?

 How much more useful are the predicates
than just the bug stack? How much better
do they localize the bug?

45

21

