
1

1

Statistical Debugging
Benjamin Robert Liblit. Cooperative Bug Isolation. PhD

Dissertation, University of California, Berkeley, 2004.

ACM Dissertation Award (2005)

Thomas D. LaToza
17-654 Analysis of Software Artifacts

2

Despite the best QA efforts software
will ship with bugs

Why would software be released with bugs?

2

4

Despite the best QA efforts software
will ship with bugs

Why would software be released with bugs?
Value in getting user feedback early (betas)
Value in releasing ahead of competitors
Value in releasing to meet a planned launch date
Bug doesn’t hurt the user all that much

Even with much better analysis, will likely be attributes or problems hard to
assure for some time

=> Free(1) testing by users!
With real test cases (not the ones developers thought users would experience)
By many users (might even find really rare bugs)

(1) For company writing software, not users….

Result:
Send Error Report Dialog

5

Bugs produced by error reporting tools must
be bucketed and prioritized

Company (e.g. Microsoft) buckets traces into distinct bugs
Automated tool takes stack trace and assigns trace to bug bucket
Bug buckets: count of number of traces, stack trace for each

All bugs are not equal – can make tradeoffs
Automated test coverage assumes all bugs are equal

Bug that corrupts Word docs, resulting in unrecoverable work, for 10%
of users

Unlikely bug that causes application to produce wrong number in Excel
spreadsheet

Limited time to fix bugs – which should you fix?

Frequency of bug (how many users? How frequently per user?)
Importance of bug (what bad thing happened?)

3

6

But there are problems with the
standard bug submission process

User hits bug and program crashes
Program (e.g. Microsoft Watson) logs stack trace
Stack trace sent to developers
Tool classifies trace into bug buckets

Problems
WAY too many bug reports => way too many open bugs
=> can’t spend a lot of time examining all of them

Mozilla has 35,622 open bugs plus 81,168 duplicates (in 2004)

Stack trace not good bug predictor for some systems (e.g. event based
systems)

⇒ bugs may be in multiple buckets or multiple bugs in single bucket

Stack trace may not have enough information to debug
=> hard to find the problem to fix

7

What’s wrong with debugging from a stack
trace?

CRASH HERE SOMETIMES

Scenario A – Bug assigned to bucket using stack trace
What happens when other bugs produce crash with this trace?

Scenario B – Debugging
Seems to be a problem allocating memory
Where is it allocated?
Not in any of the functions in the stack trace….
Arg…… It’s going to be a long day…..

CRASH HERE SOMETIMES

4

8

Statistical debugging solves the problem -
find predicates that predict bug!

(o + s > buf_size) strong predictor

Extra methods!

CRASH HERE SOMETIMES

(o + s > buf_size) strong predictor

9

The goal of statistical debugging

Given set of program runs
Each run contains counters of predicates sampled at program

points

Find
1. Distinct bugs in code – distinct problems occurring in program

runs
2. For each bug, predicate that best predicts the bug

5

10

Statistical bugging technique sends
reports for failing and successful runs

Program runs on user computer
Crashes or exhibits bug (failure)
Exits without exhibiting bug (success)

Counters count # times predicates hit
Counters sent back to developer for failing and successful runs

Statistical debugging finds predicates that predict bugs
100,000s to millions of predicates for small applications
Finds the best bug predicting predicates amongst these

Problems to solve
Reports shouldn’t overuse network bandwidth (esp ~2003)
Logging shouldn’t kill performance
Interesting predicates need to be logged (fair sampling)
Find good bug predictors from runs
Handle multiple bugs in failure runs

11

Deployment and Sampling

6

12

OSS users downloaded binaries submitting
statistical debugging reports

Small user base ~ 100??
And only for small applications
Got press on CNet, Slashdot in Aug 2003

Reports per month

13

Data collected in predicate
counters

Infer predicates on developer’s computer from fundamental predicates

Fundamental predicates sampled on user computer

7

14

Predicates sampled at distinguished
instrumentation site program points

Branches
if (condition) while(condition) for(; condition ;)
Predicates – condition, !condition

Function entry
Predicate - count of function entries

Returns
Predicates – retVal < 0, retVal = 0, retVal > 0

Scalar pairs – assignment
x = y
Predicates x > z, x < z, x = z for all local / global variables z in scope

15

Sampling techniques can be
evaluated by several criteria

Minimize runtime overhead for user
Execution time
Memory footprint

Sample all predicates enough to find bugs
Maximize number of distinct predicates sampled
Maximize number of times predicate sampled
Make sample statistically fair – chance of sampling each

instrumentation site each time encountered is the same

8

17

What’s wrong with conventional
sampling?

Approach 1: Every n executions of a statement
Approach 2: Sample every n statements

{
if (counter == 100) { check(p != NULL); counter++}
p = p->next

if (counter == 100) { check(i < max); counter++}
total += sizes[i]
}

Approach 3: Toss a coin with probability of heads 1/100 (“Bernoulli trial”)

{
if (rnd(100) == 0) { check(p != NULL); counter++}
p = p->next

if (rnd(100) == 0) { check(i < max); counter++}
total += sizes[i]
}

18

Instead of testing whether to sample at every instrumentation
site, keep countdown timer till next sample

Consider execution trace – at each instrumentation site
If 0, came up tails and don’t sample
If 1, came up heads and sample predicates at instrumentation site

Let the probability of heads (sampling) be p=1/5

Example execution trace

Time till next sample

Idea – keep countdown timer till next sample instead of generating each time

How to generate number to countdown from
to sample with probability p = 1/5 at every instrumentation site?

p=1/5 of sampling at each site

9

19

Instead of testing whether to sample at every instrumentation
site, keep countdown timer till next sample

What’s the probability that the next sample is at time t+k?

Time t: (1/5)
Time t+1 (4/5) * (1/5)
Time t+2 (4/5)^2 * (1/5)
Time t+3 (4/5)^3 * (1/5)
Time t+k (4/5)^k * (1/5)

=> p * (1 – p)^k => Geometric distribution
Expected arrival time of a Bernoulli trial

Consider execution trace that hits list of instrumentation sites
If 0, came up tails and don’t sample
If 1, came up heads and sample predicates at instrumentation site

Let the probability of heads (sampling) be p=1/5

Example execution trace

Time till next sample

time t time t+k

20

Generate a geometrically distributed
countdown timer

When we sample at an instrumentation site
Generate counter of instrumentation sites till next sample
Using geometric distribution

At every instrumentation site
Decrement counter
Check if counter is 0
If yes, sample

⇒Achieve “statistically fair” sampling without overhead of random number
generation at each instrumentation site

=> p * (1 – p)^k => Geometric distribution
Expected arrival time of a Bernoulli trial

10

21

Yet more tricks - instead of checking countdown
every sample, use fast & slow paths

More to do to make it work for loops and procedure calls
Doubles memory footprint

22

Small benchmark
programs

11

23

Statistical debugging

Predicate counters ->
bugs & bug predictors

Built a technique for sampling predicates cheaply!

How do we find bugs?

24

There are several challenges from going from
predicate counters to bugs and predictors

Feedback report R:
(x > y) at line 33 of util.c 55 times
… 100,000s more similar predicate counters

Label for report
F – fail (e.g. it crashes), or S succeeds (e.g. it doesn’t crash)

Challenges
Lots of predicates – 100,000s

Bug is deterministic with respect to program predicate
iff given predicate, bug must occur

predicate soundly predicts bug
Bugs may be nondeterministic & only occur sometimes

All we have is sampled data
Even if a predicate deterministically predicts bug
We may not have sampled it on a particular run

=> Represent everything in probabilities rather than deterministic abstractions
Instead of e.g. lattices, model checking state, Daikon true invariants, …

12

25

Notation
Uppercase variables denote sets; lower case denotes item in set

P – set of fundamental and inferred predicates

R – feedback report
One bit – succeeded or failed
Counter for each predicate p in P

R(p) – counter value for predicate p in feedback report R
R(p) > 0 – saw predicate in run
R(p) = 0 – never saw predicate in run

R(S) – counter value for instrumentation site S in feedback report R
Sum of R(p) where p is sampled at S

B – bug profile – set of feedback reports caused by a single bug
Failing runs may be in more than one bug profile if they have more than one bug

p is predictor iff R(p) > 0 ~> R in B
Where ~> means statistically likely

Goal : find minimal subset A of P such that A predicts all bugs; rank importance of p in A
Looking at this predicate will help you find a whole bunch of bugs!

Approach
Prune away most predicates – totally irrelevant & worthless for any bug (98 – 99%) – really quickly
Deal with other predicates in more detail

26

Deterministic bug example

Assume R(S) > 0 for all sites – i.e. all sites observed for all runs

R1: Succeeds (x > 5) at 3562 : R(P) = 23 (y > 23) at 1325 : R(P) = 0

R2: Fails (x > 5) at 3562 : R(P) = 13 (y > 23) at 1325: R(P) = 5

R3: Succeeds (x > 5) at 3562 : R(P) = 287 (y > 23) at 1325: R(P) = 0

Intuitively
Which predicate is the best predictor?

13

27

Approach 1 – Eliminate candidate
predicates using strategies

Universal falsehood
R(P) = 0 on all runs R
It is never the case that the predicate is true

Lack of failing coverage
R(S) = 0 on all failed runs in R
The site is never sampled on failed runs

Lack of failing example
R(P) = 0 on all failed runs in R
The predicate is not true whenever run fails

Successful counterexample
R(P) > 0 on at least one successful run in R
P can be true without causing failure
(assumes deterministic bug)

=>Predictors should be true in failing runs and false in succeeding runs

28

Problems with Approach 1
Universal falsehood

R(P) = 0 on all runs R
It is never the case that the predicate is true

Lack of failing coverage
R(S) = 0 on all failed runs in R
The site is never sampled on failed runs

Lack of failing example
R(P) = 0 on all failed runs in R
The predicate is not true whenever run fails

Successful counterexample
R(P) > 0 on at least one successful run in R
P can be true without causing failure
(assumes deterministic bug)

Assumes
Only one bug

May be no deterministic predictor for all bugs
At least one deterministic predictor of bug

Even a single counterexample will eliminate predicate
If no deterministic predictor, all predicates eliminated

14

29

Iterative bug isolation and
elimination algorithm

1. Identify most important bug B
Infer which predicates correspond to which bugs

Rank predicates in importance

2. Fix B and repeat
Discard runs where R(p) > 0 for chosen predictor

2 increases the importance of predictors of less frequently bugs (occur
in less runs)

Combination of assigning predicates to bugs and discarding runs
handles multiple bugs!

30

How to find the cause of the most
important bug?

Consider the probability that p being true implies failing run
Denote failing runs by Crash
Assume there is only a single bug (for the moment)

Fail(P) = Pr(Crash | P observed to be true)

Conditional probability
Given that P happens, what’s probability of crash

Can estimate Fail(P) for predicates
Fail(P) = F(P) / (S(P) + F(P))

Count of failing runs / (Count of all runs)

Not the true probability
it’s a random variable we can never know

But something that helps us best use observations to infer probability

15

31

What does Fail(P) mean?

Fail(P) = Pr(Crash | P observed to be true)

Fail(P) < 1.0
Nondeterministic with respect to P
Lower scores -> less predictive of bug

Fail(P) = 1.0
Deterministic bug
Predicate true -> bug!

32

But not quite enough….

Fail(P) = F(P) / (S(P) + F(P))

Consider
Predicate (f == NULL) at (b)

Fail(f == NULL) = 1.0
Good predictor of bug!

Predicate (x == 0) at (c)
Fail(x ==0) = 1.0 too!

S(X == 0) = 0, F(X ==0) > 0 if the bug is ever hit

Not very interesting!
Execution is already doomed when we hit this predicate
Bug has nothing to do with this predicate
Would really like a predicate that fails as soon as the execution goes wrong

16

33

Instead of Fail(P), what is the
increase of P?

Given that we’ve reached (c)
How much difference does it make that (x == 0) is true?
None – at (c), probability of crash is 1.0!

Fail(P) = Pr(Crash | P observed to be true)
Estimate with
Fail(P) = F(P) / (S(P) + F(P))

Context(P) = Pr(Crash | P observed at all)
Estimate with
Context(P) = F(P observed) / (S(P observed) + F(P observed)

34

Instead of Fail(P), what is the
increase of P?

Context(P) = Pr(Crash | P observed at all)
Estimate with
Context(P) = F(P observed) / (S(P observed) + F(P observed)

Increase(P) = Fail(P) – Context(P)
How much does P being true increase the probability of failure vs. P being observed?
Fail(x == 0) = Context(x == 0) = 1.0
Increase(X == 0) = 1.0 – 1.0 = 0!

Increase(P) < 0 implies the predict isn’t interesting and can be discarded
Eliminates invaraints, unreachable statements, other uninteresting predicates
Localizes bugs at where program goes wrong, not crash site
So much more useful than Fail(P)!

17

35

Instead of Fail(P), what is the
increase of P?

Increase(P) = Fail(P) – Context(P)

But Increase(P) may be based on few observations
Estimate may be unreliable

Use 95% confidence interval
95% chance that estimate falls within confidence interval
Throw away predicates where this interval is not strictly

above 0

36

Statistical interpretation of
Increase(P) is likelihood ratio test

One of the most useful applications of statistics

Two hypotheses
1. Null Hypothesis: Fail(P) <= Context(P)

Alpha <= Beta
2. Alternative Hypothesis: Fail(P) > Context(P)

Alpha > Beta

Fail P and Context P are really just ratios
Alpha = F(P) / F(P observed)
Beta = S(P) / S(P observed)

LRT compares hypotheses taking into account uncertainty from number
of observations

18

37

Thermometers diagrammatically
illustrate these numbers

Length: log(# times P observed)

Context(P) Lower bound
on Increase(P)
from confidence
interval

Size of
confidence
interval

S(P)

Usuually small => tight interval

How often true? Minimally,
how helpful?

How much
uncertainty?

How many times
is predicate true
with no bug?

38

Predicates true the
most on failing runs

But also true a lot
on nonfailing runs

19

39

Highest increase(P)
(red bar) relative
To total number of times
Observed (length)

But they don’t predict
many bugs….

40

How do we rank bugs by
importance?

Approach 1 – Importance(P) = Fail(P)
failing runs for which P is true
Maximum soundness – find lots of bugs!
May be true a lot on successful runs

Large white bands

Approach 2 – Importance(P) = Increase(P)
How much does P true increase probability of failure?

Large red bands
Maximum precision – very few false positives!
Number of failing runs is small

Sub bug predictors – predict subset of a bug’s set of failing runs
Large black bands

20

41

How do we balance precision and
soundness in this analysis?

Information retrieval interpretation
Recall / precision

Soundness = recall
Match all the failing runs / bugs!

Preciseness = precision
Don’t match successful runs / no bug!

Information retrieval solution – harmonic mean

42

21

43

Statistical Debugging Algorithm

45

Questions

• How much better is this than release build
asserts? How many of these predicates
would never have been added as asserts?

• How much more useful are the predicates
than just the bug stack? How much better
do they localize the bug?

