- Limited privilege Achieving root access on machine X may require multiple steps
 - - Get inside firewall
 - Scan network for vulnerabilities
 - Get user access to machine.
 - Get root access to machine

Attack Graphs

• Ouestion: how does security of whole system depend on parts?

- Must handle large, realistic examples
- Should guarantee properties of attack graphs
- Analysis
 - Must enable security analysis by system administrators
 - Should support incremental, partial specification

Attack Graphs 4 © Jeannette M. Wing

Handles safety and liveness properties
 Generates counterexamples

© Jeannette M. Wing

Attack Graphs

3

All according to be of according to				
Attaci	k Graphs	8	© Jeannette M. Wing	

- 2. Compute intersection M $\cap \sim \Phi$ of Buchi automata.
 - $L(M \cap \sim \Phi) = L(M) \setminus L(\Phi) = \text{executions of } M \text{ that violate } \Phi.$
- Derive G from strongly connected components of intersection automaton
- [Tarjan72].

Attack Graphs © Jeannette M. Wing

IIS buffer overflow: Squid portscan: LICQ remote-to-user: scripting exploit: local buffer overflow:	port scan gain user privileges remotely gain user privileges remotely locally get root	X X X
Attack Graphs	12	© Jeannette M. Wing

Attack Graphs	14	© Jeannette M. Wing
end		
network effects $\neg w3svc_T$	Host T is	not running IIS
plvl(T) := root	Root-leve	l privileges on host T
R(S, T, 80) intruder effects	Host T is	reachable from S on port 80

network preconditions		
licq_T	Host T is running vulnerable LICQ softw	vare
R(S, T, 5190)	Host T is reachable from S on port 5190	9
intruder effects		
plvl(T) := user	User-level privileges on host T	
network effects		
\oslash	No changes to the network component	
end		
Attack Graphs	16	© Jeannette M. Wing

n	plvl(T) := root etwork effects	Root-level privileges on host T	
	Ø	No changes to the network compo	nent
end			
Attack Graph	ns	18	© Jeannette M. Wing

Solution (Sketch):

- 1. Reduce MCSA to Minimum Hitting Set (MHS) Problem [JSW02].
- 2. Reduce MHS to Minimum Set Covering (MSC) Problem [ADG80].
- 3. Use textbook Greedy Approximation Algorithm to approximate solution [CLR85].

Attack Graphs 22 © Jeannette M. Wing

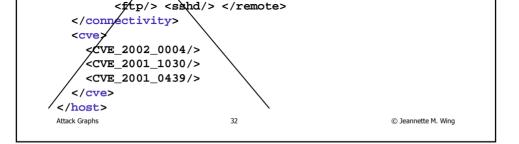
MCSA and MHS are polynomially-equivalent.

[JSW02b] Jha, Sheyner, Wing, "Two Formal Analyses of Attack Graphs," Computer Security Foundations Workshop, Nova Scotia, June 2002.

Attack Graphs 24 © Jeannette M. Wing

Use textbook Greedy Approximation Algorithm for MSC [CLR85, p. 975.]

Attack Graphs 26 © Jeannette M. Wing


Solution Approach: Greedy algorithm with provable bounds. General case is NP-complete (slightly more complex than minimum cover problem).

acpidy to make the system sale: 150 m

Attack Graphs

© Jeannette M. Wing

