Analysis of Software Artifacts

Program Representations

17-654/17-765
Analysis of Software Artifacts
Jonathan Aldrich

Representing Programs %

* To analyze software automatically, we
must be able to represent it precisely

¢ Some representations
Source code

Abstract syntax trees
Control flow graph
Bytecode

Assembly code

Binary code

Analysis of Software Artifacts - 2
Spring 2006

Spring 2006

Analysis of Software Artifacts

Spring 2006

The WHILE Language %

* A simple procedural language with:
e assignment
* statement sequencing
e conditionals
* while loops

* Used in early papers (e.g. Hoare 69) as
as a “sandbox” for thinking about
program semantics

« We will use it to illustrate several
different kinds of analysis

Analysis of Software Artifacts - 3
Spring 2006

WHILE Syntax %

» Categories of syntax

S 0OStmt statements

a [AExp arithmetic expressions
x,y O Var variables

n ONum number literals

b OBExp boolean expressions

S ==x:=a]lskip|S;
| ifbthenS, elseS, | whilebdoS

e a I=Xx|n|a,op, a,

e op ==K

« b :=true|false | ndt|b, op,b,|a, op a,
e op, :=and|or| ...

cop =<|<|=]>]|2]...

Analysis of Software Artifacts - 4
Spring 2006

Analysis of Software Artifacts

Spring 2006

Example WHILE Program %

y =X

z = 1;

while y>1 do
Z:=2%*Yy,;
y=y-1

Computes the factorial function, with the
Input in X and the output in z

Analysis of Software Artifacts - 5
Spring 2006

Abstract Syntax Trees %

« A tree representation of source code

« Based on the language grammar
* One type of node for each production
e S:=x:=a > =
¥ Ma
e S:=whilebdoS = /While\
b S

Analysis of Software Artifacts - 6
Spring 2006

Analysis of Software Artifacts

Spring 2006

Parsing: Source to AST %

e Parsing process (top down)
1. Determine the top-level production to use
2. Create an AST element for that production
3. Determine what text corresponds to each
child of the AST element
4. Recursively parse each child

« Algorithms have been studied in detalil
* For this course you only need the intuition
» Details covered in compiler courses

Analysis of Software Artifacts - 7
Spring 2006

Parsing Example %
y =X ;
z:=1; / \
while y>1 do = ;
[\ /
y=y-1 y X

V\.
N I

N

* Top-level production?

—V I %/
D

SN /]
* What are the parts? y =
° yi=X

e z:=1;while ...

Analysis of Software Artifacts -
Spring 2006

N
=

Analysis of Software Artifacts

Spring 2006

WHILE ASTs in Java %

class AST{ ... }
e Java data structureS class stmt extends AST{ ... }

class Assign extends Stmt {

mirror grammar Var var:
° S =Xz a AEXpr expr;
class Skip extends Stmt { }

| Sklp class Seq extends Stmt {
Stmt left;
| S_I.’ SZ Stmt right;
. }
class If extends Stmt {
| if b thenS, elseS, M extends ¢
| Wh||e b dO S Stmt thenStmt;

Stmt elseStmt;

class While extends Stmt {

BExpr cond;
Stmt body;
}
Analysis of Software Artifacts - 19
Spring 2006
Course Analysis Toolkit %

* Eclipse
* Open-source Java integrated development
environment
» Extensible through plugins
* Exposes Java AST to plugins

* Crystal
* Plugin for Eclipse
* Provides a basic analysis framework
* Supports interaction with end user

Analysis of Software Artifacts - 20
Spring 2006

Analysis of Software Artifacts

Spring 2006

Extending Crystal %

 Download and install Java 5
* Download and install Eclipse 3.1
* Download and install Crystal

* Implement a class that extends:
* ICrystalAnalysis for global analyses
* AbstractCrystalMethodAnalysis for method-
at-a-time analyses
* This will usually be the case
* Register your new analysis with Crystal
e It can then be run from the Crystal menu

Analysis of Software Artifacts - 21
Spring 2006

AbstractCrystalMethodAnalysis %

public void beforeAllMethods() { }
» Called at the beginning of an analysis cycle
Use for analysis setup

public abstract void analyzeMethod(MethodDeclaration d);
Invoked by the framework for each method in the system
Youhm(LjJst override this to perform your analysis task for each
metho

public void afterAllMethods() { }
e Called at the end of an analysis cycle
Use for analysis cleanup and any reporting that’s still left

Analysis of Software Artifacts - 22
Spring 2006

Analysis of Software Artifacts

Spring 2006

Example: PrintMethods %

Crystal crystal = Crystal.getinstance();

public void beforeAllMethods() {
crystal.userOut().printin(“Printing methods:”);

}

public void analyzeMethod(MethodDeclaration md) {
crystal.userOut().printin(md.getName());

}

public void afterAllMethods() {
crystal.userOut().printin(“Done.”);

}

Analysis of Software Artifacts - 23
Spring 2006

Registering the Analysis %

* In CrystalPlugin.java:

public void setupCrystalAnalyses(

Crystal crystal) {
PrintMethods pm = new PrintMethods();
crystal.registerAnalysis(pm);

Analysis of Software Artifacts - 24
Spring 2006

Analysis of Software Artifacts

The Eclipse AST

 View Tree

* Browse javadoc for:
* MethodDeclaration
* Block
e Statement
» VariableDeclarationStatement
* VariableDeclaration
* ExpressionStatement
* Assignment
* Name
* [IVariableBinding

Analysis of Software Artifacts -
Spring 2006

25

ASTNodes and Bindings

B

 ASTNode
* The AST representation of Java source

a variable in the source
* Binding

Binding to the ASTNode
» Efficiency choice

» Crystal provides a convenient shortcut
* ASTNode Utilities.getASTNode(IBinding b)

* There will be an ASTNode for each occurrence of

A single canonical object representing the variable
* Eclipse doesn’t provide a way to get from the

Analysis of Software Artifacts -
Spring 2006

26

Spring 2006

Analysis of Software Artifacts

Demo %

 Installing Crystal

* Run Assignment O

* Look at Assignment O code
e Look at Visitor

* Results of Assignment 1

Analysis of Software Artifacts - 27
Spring 2006
The Visitor Pattern %
class Visitor { class Node {
/I called before visit abstract void accept(Visitor
void preVisit(Node n) { } v);
/1 if return true, children visited
boolean visit(Element e) { class Element extends Node {
return true; } void accept(Visitor v) {
// called after child visits v.preVisit(this);
void endVisit(Element €) { boolean ¢ = v.visit(this);
return true; } if (c)
I/ called after visit children.accept(v);
void postVisit(Node n) { } v.endVisit(this);
v.postVisit(this);
} }
}
Analysis of Software Artifacts - 28
Spring 2006

Spring 2006

