
1

Course Introduction

17-654/17-765
Analysis of Software Artifacts
Jonathan Aldrich

Course Intro - Analysis of Software
Artifacts - Spring 2006

2

Why is Building Quality Software Hard?

• Compare to other engineering disciplines
• Often done; sometimes valid, sometimes not

• For other disciplines we do pretty well
• Well-understood quality assurance techniques
• Failures happen, but they are arguably rare
• Engineers can measure and predict quality

• For software, we aren’t doing well
• How many cars get recalled for a patch once a

month?
• Failure is a daily or weekly occurrence
• We have relatively poor techniques for measuring,

predicting, and assuring quality

2

Course Intro - Analysis of Software
Artifacts - Spring 2006

3

Quality in other Engineering Disciplines

• Traditional engineering disciplines
• Electrical, mechanical, civil
• Governed by mathematics of continuous systems

• Some quality strategies
• Divide and conquer

• Break a big problem into parts
• Physical location: floor, room…
• Conceptual system: frame, shell, wiring, plumbing…

• Solve those parts separately
• Overengineer

• Build two so if one fails the other will work
• Build twice as strong to allow for failure

• Statistical analysis of quality
• Relies on continuous domain

• These work because the different parts of the
system are independent
• Never completely true, but true enough in practice

Course Intro - Analysis of Software
Artifacts - Spring 2006

4

Software Quality

• Software Engineering
• Built on discrete mathematics

• Old quality strategies fail!
• Divide and conquer

• Butterfly effect: small bugs mushroom into big problems
• Overengineering

• Build two, and both will fail simultaneously
• Statistical quality analysis

• Most software has few meaningful statistical properties

• Underlying problems: lack of module
independence
• Partly due to discrete nature of software
• Partly because we don’t know how to decompose

very well
• Partly because the software world is more complex

3

Course Intro - Analysis of Software
Artifacts - Spring 2006

5

Assuring Software Quality with Analysis

• How then can we assure software?

• Fight fire with fire
• Software is discrete
• Unlike physical engineering disciplines, can prove

properties of software!
• Can eliminate possibility of failure, something we can’t

do in any other field
• NB: the hardware may still fail, but traditional engineering

can handle that well

Analysis is revolutionizing software quality
today in market leaders

Course Intro - Analysis of Software
Artifacts - Spring 2006

6

How Microsoft got Religion

• Original process: manual review
• Too many paths to consider as system grew

• Next process: add massive testing
• Tests take weeks to run
• Inefficient detection of common patterns

• Non-local, intermittent, uncommon path bugs
• Was treading water in Longhorn release

• Current process: add static analysis
• Weeks of global analysis
• Local analysis on every check-in
• Lightweight specifications
• Huge impact

• 7000+ bugs filed in June 2005
• Check-in gate eliminates large classes of errors from main

codebase

• Take-home
• Different forms of analysis are complimentary
• Supplement testing and reviews with static analysis

4

Course Intro - Analysis of Software
Artifacts - Spring 2006

7

Problem-Specific Focus

• Impractical to prove total correctness
• We’ll discuss principles, but the practice doesn’t scale
• Even harder for machines than for humans

• Instead, static analysis focuses on particular problems
• Amenable to mechanical proof

• Simple reasoning that must be consistent across program
• Difficult to assure through testing, inspection

• Non-local – hard to see during inspection
• Intermittent – unlikely to be caught by tests

• Examples
• Memory and resource errors

• Buffer overruns, null dereference, memory leaks
• Race conditions

• Interference among threads
• Protocol errors

• Getting ordering wrong
• Exceptional conditions

• Divide by zero, overflow, application exceptions

Course Intro - Analysis of Software
Artifacts - Spring 2006

8

A Broad View of Analysis

• The systematic examination of an
artifact to determine its properties

• Includes testing, reviews, model
checking as well as static code analysis

• Properties
• Functional: code correctness
• Quality attributes: evolvability, security,

reliability, performance

5

Course Intro - Analysis of Software
Artifacts - Spring 2006

9

Analysis Success Stories

• Static analysis, an important focus of this course, is
revolutionizing software development today

• Windows regression tests take weeks to run. Analysis
helps Microsoft choose which tests to run before a
critical release.

• Stanford researchers found hundreds of possible
crashing bugs in Linux
• Tool commercialized by Coverity

• Windows analysis tool group: June 2005
• Filed 7000 bugs
• Added 10,000 specifications to code
• Analyze for security, pointer errors on every check-in
• Tools available in Visual Studio 2005

Course Intro - Analysis of Software
Artifacts - Spring 2006

10

A “Simple” Analysis: the Halting Problem

• Given a program P, will P halt?

6

Course Intro - Analysis of Software
Artifacts - Spring 2006

11

Quick Undecidability Proof

• Theorem: There does not exist a program Q
that can decide for all programs P, whether P
terminates.

• Proof: By contradiction.
• Assume there exists a program Q(x) that returns

true if x terminates, false if it does not.
• Consider the program “R = if Q(R) then loop.”
• If R terminates, then Q returns true and R loops

(does not terminate).
• If R does not terminate, then Q returns false and R

terminates.
• Thus we have a contradiction, and termination

must be undecidable

Course Intro - Analysis of Software
Artifacts - Spring 2006

12

Analysis isn’t Perfect

• Impossible to decide almost any program
property without solving the halting problem

• Example: divide-by-zero bug finder
• Is there a bug in this program?
• Assume f() is defined elsewhere, but does not

affect x

int x = 0;

f();

int y = 10/x;

7

Course Intro - Analysis of Software
Artifacts - Spring 2006

13

Analysis as an Approximation
• Analysis must approximate in practice

• May report errors where there are really none
• False positives

• May not report errors that really exist
• False negatives

• All analysis tools have either false negatives or false
positives

• Analysis can be pretty good in practice
• Many tools have low false positive/negative rates
• A sound tool has no false negatives

• Never misses an error in a category that it checks

• The halting problem affects human analysis, too
• Otherwise, we could solve the halting problem by

building a computer big enough to simulate the
human brain

• So human analysis has to approximate as well

Course Intro - Analysis of Software
Artifacts - Spring 2006

14

Analysis Tradeoffs

• Point in lifecycle
• Finding errors early is cheap
• Many analysis techniques require code

• Automated vs. manual
• Automated: cheap, exhausive, can provide guarantees
• Manual: can check a richer array of properties

• Incremental vs. global
• Incremental analysis scales better, is more precise
• Often requires programmer annotations
• Important criterion: immediate benefit for annotation effort

• Soundness vs. completeness
• Soundness: finds all errors of a particular class

• Safe: no false negatives
• Goal: provide assurance

• Completeness: accepts all valid programs
• Precise: no false positives
• Goal: find bugs

8

Course Intro - Analysis of Software
Artifacts - Spring 2006

15

Course Goals

• Understanding
• Where different analyses are appropriate
• Tradeoffs between analysis techniques
• Theory sufficient to evaluate new analyses

• Experience
• Writing simple analyses
• Applying analysis to software artifacts

Course Intro - Analysis of Software
Artifacts - Spring 2006

16

Course Outline
• Theory

• Semantics and representations of code
• Reasoning about correctness
• Abstraction and soundness

• Automated Analysis
• Dataflow analysis and tools
• Bug-finding, concurrency assurance, protocol checking
• Model Checking designs and code

• Analysis across the Software Lifecycle
• Defect prediction
• Code reviews
• Testing techniques and coverage metrics
• Regression testing, test prioritization and generation
• Reengineering

• Quality Attributes
• Security, Performance, Reliability

9

Course Intro - Analysis of Software
Artifacts - Spring 2006

17

Homeworks and Projects

• Prove small programs correct with Hoare logic
• Check program correctness with ESC/Java
• Check protocols and concurrent code using a model

checker
• Design a dataflow analysis, prove it sound, and

implement in in an analysis framework
• Participate in a code review
• Analyze the throughput and reliability of a software

system
• Read and discuss 10-15 key papers from the analysis

literature
• Run a commercial or research analysis tool on source

code and report on the experience

Course Intro - Analysis of Software
Artifacts - Spring 2006

18

Evaluation

• Assignments (~60%)
• Basic understanding of analysis techniques
• Engineering tradeoffs

• Final Project (~15%)
• Evaluate analysis tools on studio or other project

• Written reports and in-class presentations
• Write and apply custom analyses

• Final exam (~15%)
• Theory and engineering

• Class participation and readings (~10%)
• Reading questions on papers from the literature
• Discussion, presentations

10

Course Intro - Analysis of Software
Artifacts - Spring 2006

19

Policies

• Time Management
• Keep track of time spent on each assignment

• Late Work
• 5 free late days; use whenever you like
• No other late work except under extraordinary circumstances

• Collaboration Policy
• You may discuss the lectures and assignments with others,

and help each other with technical problems
• Your work must be your own. You may not look at other

solutions before doing your own. If you discuss an
assignment with others, throw away your notes and work
from the beginning yourself.

• You must cite sources if you use or paraphrase any material
• If you have any questions, ask the instructor or TAs

Course Intro - Analysis of Software
Artifacts - Spring 2006

20

Introductions

• Instructor
• Jonathan Aldrich

aldrich+ at cs.cmu.edu

• TAs
• Thomas LaToza

latoza at gmail.com
• Gabriel Zenarosa

gzen+ at cs.cmu.edu

11

Course Intro - Analysis of Software
Artifacts - Spring 2006

21

Ph.D. Projects

• Possible topics
• Literature survey

• Study techniques, put into framework, identify open problems
• Comparative evaluation

• Your experience with multiple techniques or tools
• Development of a new analysis technique
• Application of an analysis technique to a new problem

domain

• Requirements
• Written report

• Length depends on nature of project
• Research emphasis
• Class presentation

• Details to be arranged with instructor

