Lecture Notes:
Semantics of WHILE

17-654/17-754: Analysis of Software Artifacts
Jonathan Aldrich (j onat han. al dri ch@s. cnu. edu)

Lecture 2

In order to analyze programs rigorously, we need a clear definition of
what a program means. There are many ways of giving such definitions;
the most common technique for industrial languages is an English docu-
ment, such as the Java Language Specification. However, natural language
specifications, while accessible to all programmers, are often imprecise.
This imprecision can lead to many problems, such as incorrect or incom-
patible compiler implementions, but more importantly for our purposes,
analyses that give incorrect results.

A better alternative, from the point of view of reasoning precisely about
programs, is a formal definition of program semantics. In this class we will
deal with operational semantics, so named because they show how programs
operate.

1 The WHILE Language

In this course, we will study the theory of analyses using a simple program-
ming language called WHILE. The WHILE language is at least as old as
Hoare’s 1969 paper on a logic for proving program properties (see Lecture
3). It is a simple imperative language, with assignment to local variables, if
statements, while loops, and simple integer and boolean expressions.

We will use the following metavariables to describe several different
categories of syntax. The letter on the left will be used as a variable rep-
resenting a piece of a program; the word in bold represents the set of all
program pieces of that kind; and on the right, we describe the kind of pro-
gram piece we are describing;:

n

3 88
<

M MMM

€

Stmt
AExp
Var
Num
BExp

statements

arithmetic expressions
program variables
number literals
boolean expressions

The syntax of WHILE is shown below. Statements S can be an assign-
ment = := q, a skip statement which does nothing (similar to a lone semi-
colon or open/close bracket in C or Java), and if and while statements
whose condition is a boolean expression b. Arithmetic expressions a in-
clude variables z, numbers n, and one of several arithmetic operators, ab-
stractly represented by op,. Boolean expressions include true, false, the
negation of another boolean expression, boolean operators op;, applied to
other boolean expressions, and relational operators op, applied to arith-

metic expressions.

S

Oopy

Opr

r = a

skip

S1; So

if b then S else Sy
while bdo S

T
n

a1 OPq G2
+=1*|/]---
true

false

not b

b1 opy bo

aj opr az

and |or|*|/]|...

2 Big-Step Expression Semantics

We will first describe the semantics of arithmetic and boolean expressions
using big-step semantics. Big-step semantics use judgments to describe

how an expression reduces to a value. In general, our judgments may
depend on certain assumptions, such as the values of variables. We will
write our assumptions about variable values down in an environment 7,
which maps each variable to a value. For example, the environment n =
[x—3, y—b] states that the value of = is 3 and the value of y is 5. Variables
not in the mapping have undefined values.

We will use the judgment form n - a | v, read, “In the environment
7, expression a reduces to value v.” Values in WHILE are integers n and
booleans (true and false).

We define valid judgments about expression semantics using a set of
inference rules. As shown below, an inference rule is made up of a set of
judgments above the line, known as premises, and a judgment below the
line, known as the conclusion. The meaning of an inference rule is that the
conclusion holds if all of the premises hold.

premise; premises ... premise,

conclusion

An inference rule with no premises is called an axiom. Axioms are al-
ways true. An example of an axiom is that integers always evaluate to
themselves:

nkFnln

In the rule above, we have written the n on the right hand side of the
judgment in bold to denote that the program text n has reduced to a math-
ematical integer n. This distinction is somewhat pedantic and sometimes
we will omit the boldface, but it is useful to remember that program seman-
tics are given in terms of mathematics, whereas mathematical numbers and
operations also appear as program text.

On the other hand, if we wish to define the meaning of an arithemetic
operator like + in the source text, we need to rely on premises that show
how the operands to + reduce to values. Thus we use an induction rule
with premises:

ntalv nkd |V V' =v+d
nkta+ad | v

This rule states that if we want to evaluate an expression a+a’, we need
to first evaluate a to some value v, then evaluate o’ to some value v’. Then,
we can use the mathematical operator + on the resulting values to find the
final result v”. Note that we are using the mathematic operator + (in bold)

to define the program operator +. Of course the definition of + could in
principle be different from +—for example, the operator + in C, defined on
the unsi gned i nt type, could be defined as follows:

nktcalv nked [v o' = (v+0') mod

ntca+a | v

This definition takes into consideration thati nt values are represented
with 32 bits, so addition wraps around after it reaches 232 — 1-while of
course the mathematical 4 operator does not wrap around. Here we have
used the C subscript on the turnstile ¢ to remind ourselves that this is a
definition for the C language, not the WHILE language.

Once we have defined a rule that has premises, we must think about
how it can be used. The premises themselves have to be proven with other
inference rules in order to ensure that the conclusion is correct. A complete
proof of a judgment using multiple inference rules is called a derivation. A
derivation can be represented as a tree with the conclusion at the root and
axioms at the leaves. For example, an axiom is also a derivation, so it is
easy to prove that 5 reduces to 5:

232

nkE515

Here we have just applied the axiom for natural numbers, substituting
the actual number 5 for the variable n in the axiom. To prove that 1 + 2
evaluates to 3, we must use the axiom for numbers twice to prove the two
premises of the rule for +:

nF1]l1 nk2]12 3=1+2
nE14+213

The third premise, 3 = 1+2, can be established using ordinary math-
ematics; we do not need to explicitly cite an inference rule to justify this
judgment.

We can write the addition rule above in a more general way to define
the semantics of all of the operators in WHILE in terms of the equivalent
mathematical operators. Here we have also simplified things slightly by
evaluating the mathematical operator in the conclusion.

ntalv nkad |

nkaopd | vop

As stated above, the evaluation of a WHILE expression may depend
on the value of variables in the environment 7. We use 7 in the rule for

4

evaluating variables. The notation 7(x) means looking up the value that
maps to in the environment 7:

n(z) =v
nkFx v

We complete our definition of WHILE expression semantics with axioms
for true, false, and an evaluation rule for not. As before, items in regular
font denote program text, whereas items in bold represent mathematical
objects and operators:

n F true | true

nF false | false
nkEblo
nkFnotd | not v

As a side note, instead of defining not in terms of the mathematical
operator not, we could have defined the semantics more directly with a
pair of inference rules:

nkb| true
nFnotb | false

n kb | false
nkEnotbd | true

3 Example Derivation

Consider the following expression, evaluated in the variable environment
n = [x—5, y—2]: (false and true) or (z < ((3*y) + 1)). I use parentheses to
describe how the expression should parse; the precedence of the operators
is standard, but as this is not a class on parsing I will generally leave out
the parentheses and assume the right thing will be done. We can produce
a derivation that reduces this to a value as follows:

n(y) =2
nF313 nkyl2
n(z) =5 nkE3*xy |6 nkE1]1
n - false | false nk true | true ntax |5 nE3xy+117
n F false and true | false nkx<3*xy+1] true

n - (false and true) or (x < 3%y + 1) | true

4 Small-Step Statement Semantics

To express the semantics of statements, we move to a small-step semantics.
In small-step semantics, instead of computing the final result of a compu-
tation in one judgment, we take one incremental execution step, typically
executing one statement. Thus, small-step semantics are ideal for watching
the program execute, step by step. This makes the operation of loops more
clear, for example. It also will be useful when we later verify properties of
analyses, because analyses are often defined statement-by-statement.

We will use the judgment form (n, S) — (7, S’), read, “In the environ-
ment 7, statement S takes a single step, resulting in a new environment 7’
and a new statement S’.” For example, consider the rule for evaluating an
assignment statement:

nkalwv
(777 SCZ:CL) = (U[x'_)U]a Sklp)

This rule uses as its premise a big-step judgment evaluating the right-
hand-side expression a to a value v. It then produces a new environment
which is the same as the old environment 7 except that the mapping for «x is
updated to refer to v. The notation njz+—v] means exactly this. The assign-
ment statement has executed, so we produce the statement skip indicating
that this statement cannot execute any further. In fact, in our small-step
semantics, all programs that terminate eventually reduce to a single skip
statement.

Of course, realistic programs are made up of more than one statement.
For a sequence of two statements, we simply reduce the first and leave the
second alone. Once the first statement reduces all the way down to skip, we
remove the skip statement and proceed to evaluate the second statement:

(777 Sl) = (77,7 Si)
(n, S1;82) — (', S7;52)

(n, skip; S2) — (1, S2)

For if statements, we evaluate the boolean condition using big-step se-
mantics. If the result is true, we replace the if statement with the statement
in the then clause. This has the effect of selecting the then branch of the if
(and ignoring the else branch). Of course, we need another rule stating that
if the result of the condition is false, we will replace the if statement with
the statement in the else clause.

nkb | true

(n, if b then S; else S3) — (1, S1)
n kb | false

(n, if b then S; else S3) — (1, S2)

While loops work much like if statements. If the loop condition eval-
uates to true, we replace the while loop with the loop body. However,
because the loop must evaluate again if the condition is still true after exe-
cution of the body, we copy the entire while loop after the loop body state-
ment. Thus, the rewriting rules produce a copy of the loop body for each
iteration of the loop until the loop guard evaluates to false, at which point
the loop is replaced with skip.

nkb | true
(n, whilebdo S) — (n, S;whilebdo 5)
n kb | false
(n, whilebdo S) +— (n, skip)

5 Example Executions

Consider the following program r := 1; i := 0; while i < m do r :=
r*n;i = 1 + 1 executing in the environment n = [n—3, m—2]. We can
determine the first execution step with the following derivation:

[n—3,m—2] 1|1
([n—3,m—2],r := 1) — ([n—3, m—2,r—1], skip)

([n—=3,m—2],7r:=1;i:=05...) — ([n—3, m—2,r—1],skip;i :=0;...)

Note that the above derivation tree assumes that the structure of the
program is parsed so that the top level is a statement sequence S;; S with
S1 being r := 1 and Sy being the rest of the program. Another possible
choice would have been S; as the statement sequence r := 1;i := 0; be-
cause we have not specified the associativity of the semicolon statement se-
quencing operator, either parsing choice is possible. Fortunately, although
the derivations differ, the program ends up executing in exactly the same
way; check this yourself if you're unsure. While we’re on the topic of pars-
ing, the intent of the program above is that both r := r+nand i := i+ 1 are

within the while loop, not just the first one (if we were writing a parser we
would close with “od” to remove the ambiguity).

In the next step, we skip the skip statement. The derivation is simple
because we are using an axiom with no premises:

([n—3, m—2, r—1],skip;i := 0;...) — ([n—3,m—2,r—1],i:=0;...)
Next, we evaluate the next assignment:
[n—3,m—2] 00

([n—3,m—2,r—1],i:=0) — ([n—3, m—2, r—1,i—0], skip)
([n—3,m—2,r—1],i := 0; while ...) — ([n—3, m—2,r—1,i—0], skip; while . ..)

Next we skip the skip statement:

([n—3, m—2, r—1,i—0], skip; while ...) — ([n—3, m—2,r—1,i—0], while ...)

Next we evaluate the while loop. Since the condition is true (evaluated
using big-step semantics) we copy the loop body out in front of the while
loop:

[n—3, m—2,r—1,i—0](i) =0 [n—3,m—2,r—1,i—0](i) = 2
[n—3, m—2,r—1i—0lFi| 0 [n—3,m—2r—1i-0Fm]2
[n—3, m—2,r—1,i—0] Fi <m | true

([n—3,m—2,r—1,i—0],whilei <mdor:=rxn;i:=i+1)—
([n—3,m—2,r—1,i—0],r :=r*n;i:=i+ l;whilei <mdor:=rxn;i:=i+1)

Next we assign to 1:
[n—=3, m—2,r—1,i—0](r) =1 [n—3,m—2,r—1,i—0](n) =3

[n—3, m—2,r—1i—0lFr |1 [n—=3m—2r—1i-0Fn|3
[n—3, m—2,r—1,i—0]Frxn |3

([n—3,m—2,r—1,i—0],7 :=r*n) — ([n—3, m—2,r—3,i—0], skip)

n—3, m—2, r—lw—=0L,r :=rxnj1: =1+ L,while: <maor:=rx*xn;1:=1+1) —
3 2 1,2—0)) + 1; while 4 d] L+ 1
([n—3,m—2,r—3,i—0],skip;i :== i+ 1l;whilei <mdor:=r*n;i:=i+1)

Assuming the examples above are sufficient to illustrate derivations, we
can proceed just by showing the remaining execution steps:

8

[n—=3, m—2,r—3,1—0],skip;i := i+ 1;whilei <mdor:=rsn;i:=i+1
[n—3, m—2,r—3,i—0],i :== i+ l;whilei <mdor:=rxn;i:=i+1

[n—3, m—2,r—3,i—1],skip;whilei < mdor:=r=*n;i:=i+1

[n—3, m—2,r—3,i—1],whilei <mdor:=rxn;i:=i+1

[n—3, m—2,r—3i—1],r :=rxn;i: =i+ l;whilei <mdor:=rxn;i:=i+1
[n—3, m—2,r—9, i—1],skip;i ;= i+ 1;whilei <mdor:=rsn;i:=i+1
[n—3, m—2,r—9,i—1],i ;=i + l;whilei <mdor:=rx«n;i:=i+1

[n—3, m—2, r—9, i—2], skip; whilei < mdor:=rxnji:=i+1

[n—3, m—2,r—9,i—2],whilei <mdor:=rxn;i:=i+1

[n—3, m—2, r—9, i—2], skip

9
)
9
)

111111111

We can see that this program computes the mth power of n, leaving the
result in r. For the input of n = 3, m = 2 we get r = 9 as expected.

6 Proofs Using WHILE Semantics

We would like to be able to prove that the program above in fact computes
the mth power of n. We assume that m > 0 and n > 0. Assuming that —*
is the reflexive, transitive closure of —, we would like to show that:

([n—=N,m—M],r:=1; i:=0; whilei <mdor:=rx*n;i:=i+1)
— ([n—N, m— M, r—NM i M)], skip)

A full proof would show the complete derivation for every step applied
in the static semantics. In this class, we will be satisfied to prove programs
correct by showing only each small-step execution. Thus, we will first ob-
serve that the semantics means the program will take the following initial
steps:

([n—N,m—M],r:=1; i:=0; whilei <mdor:=rxn;i:=i+1)
([n—N,m—M,r—1],skip; i := 0; whilei < mdor :=r=n;i:=i+1)
([n—>N,m—M,r—1],i :=0; whilei <mdor:=rxn;i:=i+1)
([n—N,m—M,r—1,i—0],skip; whilei < mdor:=r=*n;i:=i+1)
([n—=N,m—M,r—1,i—0],whilei < mdor:=rxn;i:=i+1)

1111

Now, we know that M > 0 by our assumptions from the theorem to be
proved, but we don’t know what step comes next. If M = 0 then the while
loop will reduce to a skip, but if M > 0 we will execute the while loop one

or more times. In order to verify the desired property, we need to prove the
following lemma. We assume NV > 0, M > 0,and 0 < ¢ < M.

([n—N, m— M, r—N! i—1I], whilei < mdor:=rs*n;i:=i+1)
— ([N, m— M, r—NM i M], skip)

Notice that this lemma generalizes the fact we need to prove, because it
applies to any value of I, and allows r to map to V I not just to 0. Of course,
in the case where I = 0, N' = 1 and so the lemma will allow us to directly
conclude the needed result for the theorem above. This generalization, it
turns out, corresponds directly to the loop invariant we will use to prove
this same program correct in the next lecture using Hoare Logic.

We prove the lemma by induction on M — I. Note that this is backwards
from induction on I, in that we are starting with / = M and counting
down towards zero. This is because the final result (r = N*) is fixed and
we can vary the precondition by changing the initial value of I. Thus we
are working backwardsfirst proving that the last evaluation of the loop is
correct, assuming the loop invariant for previous iterations-then working
backwards one loop iteration of the time using induction.

We prove the base case first, where M — I = 0. But this case is easy,
because then I = M and so we reduce directly to skip:

([n—~N, m—M, r~NM i~ M), whilei < mdor :=r*n;i:=i+1)
= ([n—= N, m—M, r—NM i M], skip)

We next prove the inductive case. We will assume the lemma holds for
M — I — 1, that is, substituting I + 1 into the lemma:

([n—N,m—M, ri=N T + 1], whilei < mdor :=r*n;i:=i+1)
= ([n— N, m— M, r—NM i M], skip)

Now, we know that I < M, because otherwise we would be in the base
case. Therefore we can conclude that:

([n—N,m—M,r—N" irI],whilei < mdor :=r*n;i:=i+1)
= ([n—N,m—M,r—NT i=I],r :=r*n;i:=i+1; whilei <mdor:=rsn;i:=i+1)
— ([nl—>N,mr—>M,rr—>NI*N,iv—J],skip;i::i—l—l; whilei <mdor:=rxn;i:=i+1)
= ([n—N,m—M,r—NT 5 N irsI],i:=i+1; whilei <mdor:=r*n;i:=i+1)
= ([n—=N,m—M,r—N' % N irsT + 1], skip; whilei < mdor:=r*n;i:=i+1)
— ([n—=N,m—M,r—N! % N, ir>I +1],whilei < mdor:=r*n;i:=i+1)

10

Now, N+ N = N1 Therefore, we can directly apply the inductive
hypothesis given above to prove the inductive case of the lemma.

Since the theorem follows directly from the first few reductions and the
lemma, we have proved the theorem as well.

11

