Assignment 7 (Theory and Tool)
M odel Checking with Blast

17-654/17-754: Analysis of Software Artifacts
Jonathan Aldrichj¢nathan.aldrich@cs.cmu.edu

Due: Monday, April 10, 2006 (5:00 pm)
100 points total

You may do thisassignment in pairs. For each pair, turn in ONE file named <usernamel>-
<username2>-17654-A7.zip, where the usernames are your AndreWwhdsip file should
contain answers.{txt,doc,pdf} with your answers to freasf questions. Diagrams can be hand-
drawn and turned in at class, or drawn electronicallscanned and included in the answers file
above or in a separate file. Also include the .dpddir question 2.3, cmds.c for 2.2, the Blast-
ready source files to the application for question 3,ar@output file for each of 2.1, 2.3, and
3.1. Ina comment at the top of answers, state botbwfnames, both Andrew ids, and how
long you each spent on the assignment.

Assignment Objectives:
* Understand how CEGAR eliminates infeasible paths
» Specify properties and find bugs in real C code using th&t Bladel checker.

1. Simulating CEGAR (20 points)

Consider the following code fragment:

1 lock()
2 gotLock =1,
3 while (*) {
4 if(M){
5 if (gotLock == 1) {
6 unlock();
7 gotLock = 0;
}
}
8 if (gotLock !'=1) {
9 lock();
10 gotLock =1,
}
11 unlock();

12

Consider an initial analysis of this program, keeping tadanly two predicates: lock==0 and
lock==1. Assume lock==0 initially. Whenever a lock staént is executed, a variable lock is
set to 1. Whenever an unlock statement is executed, lsek is O.

Consider using BLAST to find double lock or double unlock ernrothis code. l.e., Blast will
find an error if lock() is called when lock==1 or unloclgxalled when lock==0.

Question 1.1.

Draw the initial control flow automaton (CFA) thataBt will build, up to the point where Blast
finds thefirst error (in which case other parts of the CFA may balincomplete), or else
explores the entire search space and finds no emgour CFA:

* Number the nodes to match the number of the line thhtsit to execute.

» Label each node with “L” or “U” to represent the “loeKE or “lock==0" predicates,
respectively (the initial node should be labeled “U” dotocked/lock==0).

» Label each non-branching edge with the statement executed.

* For branches, label pred) wherepred is the condition that must be true for that branch
to be taken (thus if there are two edges one wifired and ondpred). For example,
P(gotLock==1) will go on one edge in the CFA. You needusetany label if the
predicate is *.

Note that answers may vary slightly (e.g. the shapbeofiraph or, in the case of an error, which
error path shows up first), depending on how you expla€fA, but your answer should be
consistent with the Blast algorithm given in the papethe 654 web site.

Question 1.2.
If an error state is reachable in the CFA given apdues it represent a real bug? If so, prove it
is a real bug, by showing using Hoare Logic that the pretonaf the path is not false.

If the bug is not real, show using Hoare Logic thatpitezondition of the path is false.

You may use the technique shown in the class on B&sming a variable each time it is
reassigned, or you may use the Hoare Logic systemibied@arlier in class.

Question 1.3.

If the bug was not real, come up with an interpolant éiptains why the path is unreachable.
Specifically, give a line in the program and a predicgaieh that (1) the predicate is true in the
(infeasible) path right before that program line, (2)ghedicate describes the current state, but
(3) the conjunction of that predicate with the wealestondition of the rest of the path (after
that line) is unsatisfiable (false).

Question 1.4.

Now, build the CFA again, this time considering the pragigou found in Question 1.3.
Although Blast does not in fact apply this predicate tonthele program, please apply it to the
whole program for simplicity in this assignment (othesevwou may find you need to add it
again later).

2 Running BLAST on GAIM (30 points)

In this section, you will learn how to use Blast by ingla bug and defining a protocol. First,
download Blast.zip from the course web page and extracotiitents to a directory path that
does not contain any spaces. Verify that an “includesttbry was created that contains a
number of .h files. Next, go toww.cygwin.organd install cygwin, making sure that gcc is
selected under the development section. Finally, addyiicypath$\cygwin\bin” (e.g.
“c:\cygwin\bin”) to your system path, and either ensureBlast directory is in your path or “.”
is in your path (and work from the Blast directory) ydur installation was successful, entering
“gcc” on the command prompt should result in “gcc: no irpes” and not command not found.

Next, read through the BLAST tutorial fattp://embedded.eecs.berkeley.edu/blast/doc/blast.pdf
You can skip section 2 on BLAST installation.

Question 2.1 (10 points)

Run the following two commands from the Cygwin shdie(DOS shell may not work) to build
a .i file and run BLAST on the result:

gcc —E -l include cmds.c > cmds.i

pblast.opt cmds.i —main gaim_cmd_list

Turn in Blast’s output as output21.txt.

Question 2.2 (10 points)
Describe the bug that causes the assertion to failth€ibug and turn in your modified copy of
cmds.c.

Question 2.3 (10 points)
Write a Blast .spc spec file to check the following protdor ExampleProtocol.c:

1. DoA(); // atleast 1 call

2. /Il at least 1 call of 2a or 2b
2a. DoB();

2b. DoC();

3. DoD(); // 0 or more calls

4. DoE(); /I 1 call iff DoB() was called

Run Blast using ExampleProtocol.c and your .spc file omté@ methods (1) GoodDriver, (2)
BadDriverl, and (3) BadDriver2. Turn in Blast's outputdach of these methods
(output23a.txt — output23c.txt) and your .spc file.

3 Running BLAST on Source Code (50 points)

Run BLAST on a piece of source code. The code may wetlheen written specifically for this
assignment, but you may use code from previous proje@tsrran open source project. Two
good sites for finding open source applicationsvamsv.apache.orgndwww.sourceforge.net
Note that BLAST will only run on C or C++ code. EitHa) identify or insert at least ten assert
statements (make sure you include Blast’s assert.h) ovrite a .spc file describing a protocol.

Some hints:

You probably don’t want to run BLAST on the whole apgima (but you may do so if
you wish). Instead, you probably want to find a singkdecr small number of .c files.
BLAST will begin running at a function you specify. Fondtion calls for which you do
not provide source (Note: you will still need the .h fiBLAST will replace it with a no-
op if its return value is not used, or if there is ametalue BLAST will replace it with
an effect on the variable assigned to the functiorsaaisult.

Running BLAST on a .c file will require a directory comiag all of the .h files
referenced in the .c file and all of the .h fileserehced by those .h files. Pick an
application or .c file where these are easy to fimdpdrticular, be careful of applications
that generate .h files during the build process, as yibeither have to build the
application or have lots of work to remove missing depecids. If you find a project
that you are having difficulty successfully compilingvegup and try a different project.
Do not waste lots of time trying to get gcc to run sudodgs

Question 3.1 (15 points)
Turn in a zip file containing

All of the files you ran blast on (.c & .h files)
The URL from which the code can be obtained and any additinstructions for
downloading the code included in the answers.txt file

A file output31.txt that contains the commands you used tgearand blast and the
resulting output generated by BLAST

Question 3.2 (15 points)
If you chose option (a) list the assert statemeotsigentified or added, with line number and
file. If you chose option (b) list the contentstioé .spc file you wrote.

Question 3.3 (5 points)
In a paragraph or less, describe the functionality provigyeithe code you ran BLAST on.

Question 3.4 (5 points)
Describe what conditions you checked by the assertsdaedeor the .spc file you wrote. Why
should these conditions be true?

Question 3.5 (10 points)

Critigue BLAST, and describe your experience using BLASTould/ you ever use BLAST on a
project outside of this course? What are its strerajidsveaknesses compared to (1) whitebox
testing and (2) ESC/Java?

Question 3.6 (EXTRA CREDIT). (20 points)
If you think you found a real bug, you may receive 20 poinexta credit. Describe the bug,
and justify why the program is wrong, not your assert@mnspecification.

If you submit the bug report to a developer and this submisssarits in the developer (who
may not be you or anyone you know personally) making a chtarfgethe bug, you may
receive additional extra credit (similar to in theyioes assignment).

