
3/24/2005 1

Announcements

• ComFoRT tutorial
– Natasha Sharygina and Sagar Chaki
– 12:15 Friday, location TBA

• Coming today on course web
– Project requirements
– Reading assignment

Software Testing

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich

These slides prepared by Thomas Ball, with additional
material from M. Young, A. Memon and MSR’s FSE group.

Used by permission.

3/24/2005 3

Why Test?

3/24/2005 4

Testing and The Software Process

• Three steps
– X = test before coding
– Y = test during coding
– Z = test after coding

• Questions:
– Who are your customers?
– How to choose X, Y and Z to keep

• your customers happy

• yourself healthy

3/24/2005 5

Testing: Current Challenges

• Test is huge cost of product development
• Test effectiveness and software quality hard to measure

• Incomplete, informal and changing specifications
• Downstream cost of bugs is enormous
• Lack of spec and implementation testing tools

• Integration testing across product groups
• Patching nightmare
• Versions exploding
• …

3/24/2005 6

Testing Word

3/24/2005 7

Testing Word

• inputs
– keyboard
– mouse/pen
– .doc, .htm, .xml, …

• outputs (WYSIWYG)
– printers
– displays
– .doc, .htm, .xml, …

• variables
– fonts
– templates
– languages
– dictionaries
– styles

• Interoperability
– Access
– Excel
– COM
– VB
– emacs
– sharepoint
– internet

• Other features
– 34 toolbars
– 100s of commands
– ? dialogs

• Constraints
– huge user base

3/24/2005 8

• 11. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND
CERTAIN OTHER DAMAGES. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL
MICROSOFT OR ITS SUPPLIERS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO,
DAMAGES FOR LOSS OF PROFITS OR CONFIDENTIAL OR
OTHER INFORMATION, FOR BUSINESS INTERRUPTION, FOR
PERSONAL INJURY, FOR LOSS OF PRIVACY, FOR FAILURE TO
MEET ANY DUTY INCLUDING OF GOOD FAITH OR OF
REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY
OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING
OUT OF OR IN ANY WAY RELATED TO THE USE OF OR
INABILITY TO USE THE SOFTWARE PRODUCT, THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, OR OTHERWISE UNDER OR IN CONNECTION WITH
ANY PROVISION OF THIS EULA, EVEN IN THE EVENT OF THE
FAULT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY,
BREACH OF CONTRACT OR BREACH OF WARRANTY OF
MICROSOFT OR ANY SUPPLIER, AND EVEN IF MICROSOFT OR
ANY SUPPLIER HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Microsoft Powerpoint EULA Point
11

• 11. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND
CERTAIN OTHER DAMAGES. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL
MICROSOFT OR ITS SUPPLIERS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO,
DAMAGES FOR LOSS OF PROFITS OR CONFIDENTIAL OR
OTHER INFORMATION, FOR BUSINESS INTERRUPTION, FOR
PERSONAL INJURY, FOR LOSS OF PRIVACY, FOR FAILURE TO
MEET ANY DUTY INCLUDING OF GOOD FAITH OR OF
REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY
OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING
OUT OF OR IN ANY WAY RELATED TO THE USE OF OR
INABILITY TO USE THE SOFTWARE PRODUCT, THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, OR OTHERWISE UNDER OR IN CONNECTION WITH
ANY PROVISION OF THIS EULA, EVEN IN THE EVENT OF THE
FAULT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY,
BREACH OF CONTRACT OR BREACH OF WARRANTY OF
MICROSOFT OR ANY SUPPLIER, AND EVEN IF MICROSOFT OR
ANY SUPPLIER HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

3/24/2005 9

The GPL
• 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

• 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

• 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

• 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Is There Any Program That
Can Be Fully Tested?

3/24/2005 11

Goals for Understanding Testing

• What is testing and what are the key
problems in testing?

• Model-centric testing
• Code-centric testing
• Test selection and prioritization

3/24/2005 12

Standard Testing Questions

• Did this test execution succeed or fail?

• How shall we generate/select test cases?

• How do we know when we’ve tested
enough?

• What do we know when we’re done?

1. What do we know when
we’re done?

3/24/2005 14

Some Testing Goals
• Reveal faults

– Glenford Myers, The Art of Software Testing
– Dijsktra

• Establish confidence
– of reliability
– of (probable) correctness
– of detection (therefore absence) of particular faults

• Clarify/infer the specification

• Represent the customer

• Minimize risk

3/24/2005 15

Testing Theory (such as it is)

• Plenty of negative results
– Nothing guarantees correctness
– Undecidability of even simple properties

– Combinatorial explosion

– Statistical confidence is prohibitively expensive

– Being systematic may not improve fault detection
• as compared to simple random testing

– …

• Few positive results
– theory of finite state machines

– specification-based testing

3/24/2005 16

What Information Can We
Exploit?

• Specifications (formal or informal)
– in oracles
– for selection, generation, adequacy

• Designs
– …

• Code
– for selection, generation, adequacy

• Usage
– historical or models

• Organization experience

3/24/2005 17

Testing for Reliability

• Reliability is statistical, and requires a
statistically valid sampling scheme

• Programs are complex human artifacts with few
useful statistical properties

• In some cases the environment has useful
statistical properties
– stable, pre-existing systems (telephones)
– systems with thoroughly modeled environments

(avionics)

3/24/2005 18

Process-Based Reliability
Testing

• Rather than relying only on properties of the
program, we may use historical characteristics of
the development process

• Reliability growth models (Musa, Littlewood, et
al) project reliability based on experience with
the current system and previous similar systems

2. When can we stop?

Historical focus of research in 70s,
80s; no longer active.

3/24/2005 20

“Adequate” testing

• Ideally: adequate testing ensures some property
(proof by cases)
– Origins in [Goodenough & Gerhart], [Weyuker and

Ostrand]
– In reality: as impractical as program proofs

• Practical “adequacy” criteria are really
“inadequacy” criteria
– If no case from class XX has been chosen, surely

more testing is needed ...

3/24/2005 21

Systematic Testing

• Systematic (non-random) testing is aimed at
program improvement, not measurement
– obtaining valid samples and maximizing fault

detection require different approaches
– it is unlikely that one kind of testing will be satisfactory

for both

• “Adequacy” criteria mostly negative: indications
of important omissions
– positive criteria (assurance) are no easier than

program proofs

3/24/2005 22

Partition Testing

• Basic idea: Divide program input space
into (quasi-) equivalence classes
– Underlying idea of specification-based,

structural, and fault-based testing

3/24/2005 23

Specification-Based Partition
Testing

• Divide the program input space according to
identifiable cases in the specification
– May emphasize boundary cases
– May include combinations of features or values

• If all combinations are considered, the space is usually too
large

• Systematically “cover” the categories
– May be driven by scripting tools or input generators
– Example: Category-Partition testing [Ostrand]

3/24/2005 24

Structural Coverage Testing

• (In)adequacy criteria
– If significant parts of program structure are not tested, testing is

surely inadequate

• Control flow coverage criteria
– Statement (node, basic block) coverage

– Branch (edge) and condition coverage

– Data flow (syntactic dependency) coverage

– Various control-flow criteria

• Attempted compromise between the impossible and the
inadequate

3/24/2005 25

Basic structural criteria (ex.)

a

b

c

d

e

f

Edge ac is required by all-edges
but not by all-nodes coverage

Typical loop coverage criterion
would require zero iterations
(cdf), one iteration (cdedf), and
multiple iterations
(cdededed...df)

3/24/2005 26

Data flow coverage criteria (ex.)

x := 7

y := x

y := y+1

z := x+y

2 reaching definitions
(one is from self)

2 reaching definitions for x,
and 2 reaching definitions for y

Rationale: An untested def-
use association could hide
an erroneous computation

3/24/2005 27

Structural Coverage in Practice

• Statement and sometimes edge or condition
coverage is used in practice
– Simple lower bounds on adequate testing; may even

be harmful if inappropriately used for test selection

• Additional control flow heuristics sometimes
used
– Loops (never, once, many), combinations of

conditions

3/24/2005 28

Fault-based Testing

• Given a fault model
– hypothesized set of deviations from correct program
– typically, simple syntactic mutations; relies on

coupling of simple faults with complex faults

• Coverage criterion: Test set should be adequate
to reveal (all, or x%) faults generated by the
model
– similar to hardware test coverage

3/24/2005 29

Fault Models

• Fault models are key to semiconductor testing
– Test vectors graded by coverage of accepted model

of faults (e.g., “stuck-at” faults)

• What are fault models for software?
– What would a fault model look like?
– How general would it be?

• Across application domains?
• Across organizations?
• Across time?

• Defect tracking is a start

3/24/2005 30

The Budget Coverage Criterion

• A common answer to “when is testing done”
– When the money is used up
– When the deadline is reached

• This is sometimes a rational approach!
– Implication 1: Test selection is more important than

stopping criteria per se.
– Implication 2: Practical comparision of approaches

must consider the cost of test case selection

3. How shall we generate/select
tests?

3/24/2005 32

Test Generation: Standard Advice

• Specification coverage good for generation as
well as adequacy
– applicable to informal as well as formal specs

• Fault-based tests
– usually ad hoc, sometimes from check-lists

• Program coverage last
– to suggest uncovered cases, not just to achieve a

coverage criterion

3/24/2005 33

Symbolic Execution

• Proposed for test generation in early 70s

• Given finite path to cover
– generate constraints
– check for satisfiability
– if satisfiable then generate input

• Few tools in practice

3/24/2005 34

Testing after change

• Change to spec/code may
– make some tests obsolete
– change test results
– require generation of new tests

• Selective regression testing well studied
– given a code change, what tests should we

run?
– Scout-tool widely used in MS

4. Was this test execution
correct?

3/24/2005 36

The Importance of Oracles

• Much testing research concentrates on
adequacy, ignoring oracles

• Much testing practice relies on the “eyeball
oracle”
– Expensive, especially for regression testing

• makes large numbers of tests infeasible

– Not dependable

• Automated oracles are essential to cost-
effective testing

3/24/2005 37

Sources of Oracles

• Specifications
– sufficiently formal (e.g., SCR tables)
– but possibly incomplete (e.g., assertions in Anna,

ADL, APP, Nana)

• Design, models
– treated as specifications, as in protocol conformance

testing

• Prior runs (capture/replay)
– especially important for regression testing and GUIs;

hard problem is parameterization

3/24/2005 38

What can be automated?

• Oracles
– assertions; replay; from some specifications

• Selection (Generation)
– scripting; specification-driven; replay variations
– selective regression test

• Coverage
– statement, branch, dependence

• Management

