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Topics

� Timing attack
� Algorithms leak information
� Nice example of practice trumping theoretical 

security
� Hardening algorithms: randomization

� Privilege separation
� Hardening software: principle of least 

privilege



Remote Timing Attacks are 
Practical

with  Dan Boneh



Side channel analysis

� Side channel = unintentional leak of 
information

� Attackers learns secrets by observing 
normal program behavior
� power
� noise
� timing information

� Powerful and realistic approach to 
breaking crypto



Overview

� Main result:  RSA in OpenSSL 0.9.7 is 
vulnerable to a new timing attack:
� Attacker can extract RSA private key by measuring 

web server response time.

� Exploiting OpenSSL’s timing vulnerability: 
� One process can extract keys from another.
� Insecure VM can attack secure VM.

� Breaks VM isolation.

� Extract web server key remotely.
� Our attack works across campus



Why are timing attacks against 
OpenSSL interesting?

� Many OpenSSL Applications
� mod_SSL (Apache+mod_SSL has 28% of HTTPS market)
� stunnel (Secure TCP/IP servers)
� sNFS (Secure NFS)
� bind (name service)
� Many more.

� Timing attacks previously applied to smartcards [K’96]
� Never applied to complex systems.
� Most crypto libraries do not defend:

� libgcrypt, cryptlib, ...
� Mozilla NSS only one we found to explicitly defend by default.

� OpenSSL uses well-known optimized algorithms



Outline

� RSA Overview and data 
dependencies 

� Present timing attack

� Results against OpenSSL 0.9.7

� Defenses



RSA Algorithm

� N is a public modulus.  Let N = p*q
� p,q 512-bit prime numbers

� Let e*d = 1 mod (p-1)(q-1)
� e is public encryption exponent
� d is private decryption exponent

� Encryption: me mod N = c 
� Decryption: cd mod N = med mod N = 

m mod N
� Secrets: d, p ,q. 



RSA & CRT
� RSA decryption: gd mod N = m

� d  & g are 512 bits

� Chinese remaindering (CRT) uses factors directly.  
N=pq, and d1 and d2 are pre-computed from d:

1. m1 = gd1 mod q
2. m2 = gd2 mod p
3. combine m1 and m2 to yield   m (mod N)

� CRT gives 4x speedup

� Goal:  learn factors (p,q) of N.
� Kocher’s [K’96] attack fails when CRT is used.



RSA Decryption Time Variance

� Causes for decryption time variation:
� Which multiplication algorithm is used.

� OpenSSL uses both basic mult. and Karatsuba mult.

� Number of steps during a modular reduction
� modular reduction goal: given u, compute u mod q
� Occasional extra steps in OpenSSL’s reduction alg.

� There are MANY:
� multiplications by input g
� modular reductions by factor q (and p)



Reduction Timing Dependency

� Modular reduction:    given u, compute u mod q.

� OpenSSL uses Montgomery reductions [M’85] .

� Time variance in Montgomery reduction:
� One extra step at end of reduction algorithm

with probability

Pr[extra step] ≈ (g mod q) [S’00]

2q



Pr[extra step] ≈ (g mod q)
2q

Value g

Decryption 
Time

q 2q p



Multiplication Timing Dependency

� Two algorithms in OpenSSL:
� Karatsuba (fast): Multiplying two numbers of 

equal length
� Normal (slow): Multiplying two numbers of 

different length

� To calc  x⋅g mod q  OpenSSL does:
� When x is the same length as (g mod q), use 

Karatsuba mult.
� Otherwise, use Normal mult.



Multiplication Summary

g < q

Decryption 
Time

q

Normal MultiplicationKaratsuba
Multiplication

g
g > q



Data Dependency Summary

� Decryption value g < q
� Montgomery effect: longer decryption time
� Multiplication effect: shorter decryption time

� Decryption value g > q
� Montgomery effect: shorter decryption time
� Multiplication effect: longer decryption time

Opposite effects! But one will always dominate



Previous Timing Attacks

� Kocher’s attack does not apply to RSA-CRT.

� Schindler’s attack does not work directly on 
OpenSSL for two reasons:
� OpenSSL uses sliding windows instead of square and 

multiply
� OpenSSL uses two mult. algorithms.

⇒ Both known timing attacks do not work on 
OpenSSL.



Outline

� RSA Overview and data dependencies during 
decryption

� Present timing attack

� Results against OpenSSL 0.9.7

� Defenses



Timing attack: High Level

� Suppose g = q for the top i-1 bits of q, 
0 elsewhere

� Goal: Decide whether bit i = 1 or 0
� Let ghi = g, but with bit i = 1. 2 cases:

1  0  1  1  0 0  0  0  0  0  0

1  0  1  1  0 ?  ?  ?  ?  ?  ?

1  0  1  1  0 1  0  0  0  0  0

g

ghi

q

KNOWN bit i Either
g < q < ghi

or
g < ghi < q



Timing Attack: High Level

Goal: Decide  g < q < ghi or g < ghi < q
1. Sample decryption time for g and ghi:

t1 = DecryptTime(g)
t2 = DecryptTime(ghi)

2. If   |t1 - t2|   is large 
⇒ g and ghi straddle q 
⇒ bit i is 0    (g < q < ghi)

else  
⇒ bit i is 1    (g < ghi < q)

large vs. small called
0 -1 gap



Timing Attack Details

� We know what is “large” and “small” from attack on 
previous bits. 

� Use sampling to filter noise

� Decrypting just g does not work because of sliding 
windows
� Decrypt a neighborhood of values near g
� Will increase diff. between large and small values 
⇒ larger 0-1 gap

� Only need to recover q/2 bits of q [C’97]



The Zero-One Gap

Zero-one gap



How does this work with SSL?

How do we get the server to decrypt our g?



Normal SSL Decryption

Regular Client SSL Server
1. ClientHello

2. ServerHello
(send public key)

3. ClientKeyExchange
(re mod N)

Result: Encrypted with computed shared master secret



Attack SSL Decryption

Attack Client SSL Server

1. ClientHello

2. ServerHello
(send public key)

3. Record time t1

Send guess g or ghi

4. Alert     

5. Record time t2

Compute t2 –t1



Attack requires accurate clock

� Attack measures 0.05% time difference 
between g and ghi

� << 0.001 seconds on a P4

� We use the CPU cycle counter as fine-
resolution clock
� “rdtsc” instruction on Intel
� “%tick” register on UltraSparc



Outline

� RSA Overview and data dependencies during 
decryption

• Present timing attack

� Results against OpenSSL 0.9.7

� Defenses



Attack extract RSA private key

Montgomery reductions
Dominates

Multiplication routine dominates

zero-one gap



Attack extract RSA private key

Montgomery reductions
Dominates

Multiplication routine dominates

zero-one gap



Attack works on the network

Similar timing on
WAN vs. LAN



Attack Summary

� Attack successful, even on a WAN

� Attack requires only 350,000 – 1,400,000 
decryption queries.

� Attack requires only 2 hours.



Outline

� RSA Overview and data dependencies during 
decryption

• Present timing attack

• Results against OpenSSL 0.9.7

� Defenses



Recommended Defense:
RSA Blinding

� Decrypt random number related to g:
1. Compute x’ = g*re mod N, r is random
2. Decrypt x’ = m’
3. Calculate m = m’/r mod N

� Since r is random, the decryption time 
should be random

� 2-10% performance penalty



Blinding Works!



Other Defenses

� Require statically all decryptions to take 
the same time
� Pros? Cons?

� Dynamically make all decryptions take 
the same time
� Only release decryption answers on some 

interval �
� Pros? Cons?



Conclusion

� Attack works against real OpenSSL-
based servers on regular PC’s.

� Well-known optimized algorithms can 
easily leak secrets

� Randomization of decryption time helps 
solve problem



Questions?



Privtrans:
Automatically Partitioning 
Programs for Privilege 
Separation

with Dawn Song



Privileged Programs

� Attackers specifically target privileged programs
� Large number of privileged programs. Ex: network 

daemons, setuid(), etc.

� A Privilege may be:
� OS privilege – Ex: opening /etc/passwd
� Object privilege – Ex: using crypto keys

� Privileges typically needed for small part of execution



Privileged 
operations

Operations 
that don’t 
require 
privileges

A Security Problem with 
Privileged C Programs

(finds bug in
non-priv part)

Privileges

Run
Root Shell

Install
kernel module



Privilege Separation

� Privilege separation partitions program into:
� Privileged Monitor (usually small)
� Unprivileged Slave (much bigger) 

� Enforces principle of least privilege
� Monitor exports limited interface
� OS provides fault isolation between processes

� Previous work: 
� Privilege separation on OpenSSH [Provos et al 2003] 
� Privman---library assisting privilege separation [Kilpatrick 2003]



Enforcing least privileges
(in a nutshell)

Privileged 
operations

Operations 
that don’t 
require 
privileges

No Privileges

(finds bug in
non-priv part)

Run
Root Shell

Install
kernel module



Automatic Privilege Separation

� Previous privilege separation done by hand

goal: 
Automatically integrate privilege separation to 

existing source code



Privtrans

Build
Callgraph

Privtrans Overview

Source
Code

Few
Annotations

Dataflow
Analysis

Source code
rewriting

Slave
Source code

Monitor
Source code



Privilege Separation at Runtime

Slave Address 
Space

Main 
Execution

W
rapper

Monitor Address
Space

W
rapper

Privileged
Server

State
Store

Policy

RPC
Request

RPC
Reply



Advantages of Our 
Automatic Privilege Separation

� Quick and easy to use on existing software
� Can easily re-integrate as source evolves

� Strong model of privilege separation
� Any data derived from privileged resource is privileged
� All privileged data protected by monitor
� More secure than just access control

� Allows fine-grained policies
� Monitor can allow/disallow any privileged call

� Monitor easier to secure
� Monitor small � easier to apply other static/dynamic techniques
� Monitor can be ran on secure host



Talk Outline:
Our Techniques & Results 

� Techniques in Privtrans:

1. Data type qualifiers

2. Static analysis and propagating qualifiers

3. Qualifier polymorphism and dynamic checks

4. Other components: State Store, Wrappers, Translation

5. Policies

� Experiment results



Program type qualifiers

� Add a type qualifier to every variable and function
� Privileged – variable or function uses/accesses 

privileged resource
� Unprivileged – everything else

� Programmer provides a few initial annotations
� Variables/functions that are known privileged
� Annotations are C attributes

Ex: int __attribute__((priv)) sock;
� Un-annotated variable/function initially assumed 

unprivileged



Inferring qualifiers: Static Analysis

� Static analysis infers unknown privileged qualifiers
� Through assignment
� Through use in API (i.e., functions declared but not defined)
� Use as argument or return value to a privileged function

� Result of inference: API calls with privileged arguments
� Monitor execute these calls
� Monitor API -- only privileged functions in original source

� Privileged qualifiers found using meet-over-path 
analysis
� Conservative
� Similar to CQual “taint” analysis [foster99,shankar01]



Function Argument Polymorphism

� Function may be polymorphic in argument types
� Privileged call – called with privileged arguments
� Unprivileged call – no arguments or return value 

privileged

� Static analysis is conservative
� May not be able to decide statically if call privileged or not
� Must err on conservative side



A small polymorphic example

if(…)

e = f(a);
c = a;

e = f(b);
c = b;

f2(c);

int (priv) a;
int (unpriv) b;

f exec’ed in 
monitor.

priv: a,e,c

f exec’ed in 
slave.
priv: a

Dataflow tells us f2 should be exec’ed 
in monitor

true false



Our solution to polymorphism:
Limiting calls to the monitor

� Combine static analysis with runtime information

� Insert code into slave to dynamically track qualifiers 
� Yields check of runtime (dynamic) privileged status
� Improves accuracy of static analysis 
� Slave wrappers check flags

� Reduced monitor calls = improved performance
� Monitor must defend against same types of attacks 

anyway
� Limit number of calls to monitor



Dynamic Tracking of Privileged 
Variables

if(…)

privvec_f[1] = E_PRIV;
e = priv_f(a, privvec_f);
c = a;
privvec_f2[1] = E_PRIV;

privvec_f1[1] = E_UNPRIV;
e = f(b);
c = b;
privvec_f2[1] = E_UNPRIV;

priv_f2(c,privvec_f2);

int (priv) a;
int (unpriv) b;
int privvec_f[2];
int privvec_f2[2];

true false



Other components
(More information in paper)

� State store: keeps track of monitor values between 
calls
� Monitor gives slave opaque index of previous values
� Slave does not know anything about internal monitor state
� Monitor can execute on different host than slave

� Wrappers
� Use RPC as generic transport
� Slave wrappers check dynamic qualifiers 

� Source-to-source translation – Use CIL [necula et al 02]



Fine-grained policies

� Limited monitor interface is default protection

� Fine-grained policies can be added
� Policies allow/disallow at function call level
� Monitor can keep full context of call sequences

� policies can be precise

� Previous techniques for automatically creating 
policies
� Based on FSM/PDA of allowed call sequences
� Based on call arguments



Experimental results:
Changes to code 

20 min72211675OpenSSL

2 hrs42298590OpenSSH

2 hrs13421925thttpd

1.5 hrs3112299ping

1 hr131640chsh

1 hr121745chfn

time to place 
annotations

# calls 
changed 
automatically 

# user 
annotations

src linesProgram
Name



Experimental Results:
API Exported by the monitor

2

2

4

1

1

1

# 
annotations

private key operationsOpenSSL

pam operations/crypto key 
operations

OpenSSH

socket operationsthttpd

socket operationsping

pam functionschsh

pam functionschfn

API exported by monitorName



Experiences:
Potential issues and solutions

� Changing UID of slave
� complicated but portable in Provos et al
� Our approach: implement new system call 

� Distinguish privileged values in a collection 
(e.g., array) on slave
� opaque monitor identifier suffices

� Other issues discussed in paper



Result quality and performance

� Our automatic approach results in similar API to manual 
separation in OpenSSH

� Performance overhead reasonable
� Usually ≤ 15% for programs tested, depending on application
� Overhead amortized over total execution

� Overhead dominated by cross-process call time
� SFI can reduce or eliminate this cost

� Works on small and large programs



Conclusion

� Type information useful for slicing programs
� Easy to perform on existing programs
� Allows for fine-grained policies
� can re-incorporate privilege separation as source evolves
� Techniques apply to C program – should also work on Windows

� Privtrans results similar to manual privilege separation

� Improve static analysis precision with dynamic checks

� Techniques work on small and large programs



Questions?

Contact:
David Brumley or Dawn Song

Carnegie Mellon University
{dbrumley,dawn.song}@cs.cmu.edu



Begin backup slides

� Begin backup slides



Potential Issues of 
Automatic Privilege Separation

� May not work on all programs because:
� Socket numbering different
� UID/GID checks different
� Source code defies static analysis

� Collections are hard to interpret
� Ex: array of file descriptors
� Opaque index returned by monitor often enough 

to distinguish priv from unpriv.



Performance Overhead Numbers

2.17listen

9.76bind

7.67open

8.83socket

Performance penalty factorCall name

Overhead dominated by cross-domain call

� Similar to Kilpatrick et al.

� No attempt to optimize per-application

� Can be reduced several orders of magnitude by SFI



Future Work

� Add pointer tracking for better precision
� Esp. when to free priv. data

� Incorporate automatic policy generation

� Use attribute information to make better 
system call interposition models



Privileges in a program

A privilege in a program is:
� An OS Privilege:

� Ex: Reading /etc/passwd

� The ability to access object
� Ex: Crypto keys



Many different approaches to
prevent privilege escalation

� Rewrite application in a safe language – $$$$$$$$

� Find and fix all bugs – impractical

� System-call Interposition – too coarse grained

� Runtime checks (stackguard, etc) – usually applied 
to the whole program



Advantages of dynamic checks

� Improve precision of static analysis

� Do not breach security properties of program.

� Dynamic checks are safe:
� Attacker tries to make privileged call w/o privileges
� fails!

� Attacker tries to make call through monitor
� Monitor API limits restricts types of calls.
� Monitor policy should disallow.



Monitor State Store

� Line 2 – Slave asks monitor 
to create socket
� Monitor creates socket.
� Stores in state store, returns 

opaque index

� Line 3 – Slave asks monitor 
to update socket.
� Slave provides index from line 

2.
� Monitor looks up socket
� Performs setsockopt().

1. int __((priv))__ sock;
2. sock = socket(…);
3. setsockopt(sock,..);



Automatic Privilege Separation

� Previous privilege separation done by hand

Our goal: 
Automatically integrate privilege separation to 

existing source code

Source
Code

Annotations

Privtrans

Slave

Monitor


