1/7-654:

!'_ Analysis of Software Systems

Spring 2005
4/21/2005

i Topics

= TIming attack
« Algorithms leak information

= Nice example of practice trumping theoretical
security

= Hardening algorithms: randomization

= Privilege separation

»« Hardening software: principle of least
privilege

Remote Timing Attacks are
Practical

with Dan Boneh

i Side channel analysis

s Side channel = unintentional leak of
Information

= Attackers learns secrets by observing
normal program behavior

= power
= Noise
« timing information

= Powerful and realistic approach to
breaking crypto

i Overview

= Main result: RSA in OpenSSL 0.9.7 Is
vulnerable to a new timing attack:

« Attacker can extract RSA private key by measuring
web server response time.

= EXxploiting OpenSSL’s timing vulnerability:
= One process can extract keys from another.

= Insecure VM can attack secure VM.
= Breaks VM isolation.

= Extract web server key remotely.
=« Our attack works across campus

Why are timing attacks against
i OpenSSL interesting?

= Many OpenSSL Applications
= mod_SSL (Apache+mod_SSL has 28% of HTTPS market)
= stunnel (Secure TCP/IP servers)
= SNFS (Secure NFS)
= bind (name service)
= Many more.

= Timing attacks previously applied to smartcards [K'96]
= Never applied to complex systems.

= Most crypto libraries do not defend:
= libgerypt, cryptlib, ...
= Mozilla NSS only one we found to explicitly defend by default.

= OpenSSL uses well-known optimized algorithms

i Outline

> RSA Overview and data
dependencies

= Present timing attack
= Results against OpenSSL 0.9.7

s Defenses

i RSA Algorithm

= N Is a public modulus. Let N = p*q
= p,q 512-bit prime numbers
= Lete*d =1 mod (p-1)(g-1)
= € IS public encryption exponent
= d Is private decryption exponent
= Encryption: m®* mod N =c¢
= Decryption: ¢ mod N = m®® mod N =
m mod N
= Secrets: d, p ,Q.

i RSA & CRT

SA decryption: g mod N = m
= d &gare512 bits

= Chinese remaindering (CRT) uses factors directly.
N=pq, and d1 and d2 are pre-computed from d:
1. m1 =g%% mod q
2. m2 =g% mod p
3. combine m1 and m2 to yield m (mod N)

= CRT gives 4x speedup

= Goal: learn factors (p,q) of N.
= Kocher’s [K'96] attack fails when CRT is used.

i RSA Decryption Time Variance

= Causes for decryption time variation:

=« Which multiplication algorithm is used.
= OpenSSL uses both basic mult. and Karatsuba mult.

=« Number of steps during a modular reduction
= modular reduction goal: given u, compute u mod ¢
= Occasional extra steps in OpenSSL’s reduction alg.

= There are MANY:
=« multiplications by input g
= modular reductions by factor g (and p)

i Reduction Timing Dependency

= Modular reduction: given u, compute u mod g.
= OpenSSL uses Montgomery reductions [w8s] .

= Time variance in Montgomery reduction:

=« One extra step at end of reduction algorithm
with probability

Prlextra step] = (g mod q) [S'00]
2q

Prlextra step] = (g mod q)

S

Qecryption
Ti . .
Ime //,
/] .
/ |
// / /

/ / /

/ /) /
VA / /
;v 7

4 : : Iy
q 20 p

i Multiplication Timing Dependency

= Two algorithms in OpenSSL.:

=« Karatsuba (fast): Multiplying two numbers of
equal length

« Normal (slow): Multiplying two numbers of
different length

= To calc xIld mod g OpenSSL does:

= When x is the same length as (g mod @), use
Karatsuba muilt.

= Otherwise, use Normal muilt.

i Multiplication Summary

Qecryption
Time

|

Karatsuba Normal Multiplication

Multiplication

|

> g

g<(g g->q

i Data Dependency Summary

= Decryption value g <
= Montgomery effect: longer decryption time
= Multiplication effect: shorter decryption time

= Decryption value g > ¢
=« Montgomery effect: shorter decryption time
= Multiplication effect: longer decryption time

Opposite effects! But one will always dominate

i Previous Timing Attacks

= Kocher’s attack does not apply to RSA-CRT.

= Schindler’s attack does not work directly on
OpenSSL for two reasons:

= OpenSSL uses sliding windows instead of square and
multiply

=« OpenSSL uses two mult. algorithms.

- Both known timing attacks do not work on
OpenSSL.

i Outline

= RSA Overview and data dependencies during
decryption

> Present timing attack
= Results against OpenSSL 0.9.7

s Defenses

i Timing attack: High Level

= Suppose g = q for the top I-1 bits of g,
O elsewhere

= Goal: Decide whether biti =1 or O
m Letg,, =g, butwithbiti=1. 2 cases:

KNQWN gbiti

(\
glro01100 0000
ql1 011072722222
0ni(1 0 1 1020 00 0 Of

i Timing Attack: High Level

Goal: Decide g<g<g,0rg<g,<g
1. Sample decryption time for g and g;,;:

t, = DeCryWrge vs. small calle?
t, = DecryptTime(Q,. 0-1gap
2. If (I, -t,|)7s large —
— g and g, straddle g
= bitiis0 (g<q<g,)
else
— bitiis1 (g<g,<0q)

i Timing Attack Detalls

= We know what is “large” and “small” from attack on
previous bits.

= Use sampling to filter noise

= Decrypting just g does not work because of sliding
windows

=« Decrypt a neighborhood of values near g

= Will increase diff. between large and small values
= larger 0-1 gap

= Only need to recover g/2 bits of q [c'97]

‘L The Zero-One Gap

Je+B7F T T T - T
zero—one gap when a bit of g=8

zero—one gap when a bit of g=1

2. 9e+87F [

2e+d7F

1.95e+87F [

1e+87

Zero-one gap

Tine difference in CPU cycles

Se+86

—Se+06 1 1 1 1 1 1
188 2808 3aa <188 Saa 688 Faa gaa 988 1888

Heighborhood siz=e

i How does this work with SSL?

How do we get the server to decrypt our g?

i Normal SSL Decryption

1. ClientHello
Regular Client » SSL Server
2. ServerHello

(send public key) E' ;I
3. ClientkeyExchange 3 é

(remod N) Immmmmmmnn -

\ /

Result: Encrypted with computed shared master secre

i Attack SSL Decryption

1. ClientHello
Attack Client 2. ServerHello SSL Server
(send public key)
< - E o)
3. Record timet o g
Send guess g ok, g e 5
T A=

4. Alert

5. Record time,t
Compute 1 —t;

i Attack requires accurate clock

s Attack measures 0.05% time difference
between g and g,

= << (0.001 seconds on a P4

= We use the CPU cycle counter as fine-
resolution clock

= “rdtsc” instruction on Intel
= “Ootick” register on UltraSparc

i Outline

= RSA Overview and data dependencies during
decryption

. Present timing attack

> Results against OpenSSL 0.9.7

s Defenses

i Attack extract RSA private key

1.5e+87

le+B7 -

Se+B6

Tine difference in CPU cycles
@

-1le+87 [

=-1.9e+87

-9e+86 [

Key 1 {g=8}

3
Key 1 {(g=1} »

Montgomery reductions
M / Dominates

%ﬁy“{g&w@x%x xR w@}&% Sosac %@%M N
|zero-one gap +++"i

+
+Hpy H-+ -
+ + +-|¢# ++

+
RN + 4y + i +
+ 3¢ F

+
+
+ +
+
++ ||*¢-+
+ + 4 +

Multiplication routine dominates |

1 1 1
a 548 188 158 2008 250

Bits guessed of factor q

‘L Attack extract RSA private key

1.5e+87

Key 1 {g=8}
Key 1 {g=1%

le+87 ﬂ' . }

Montgomery reductions
sewes -~ Dominates

zero-one gap

-Se+B6 -

Tine difference in CFU cycles

-1le+B7 [

Multiplication routine dominates |

=1.9e+B7F

a 508 188 158 2008 2508

Bits puessed of factor q

‘L Attack works on the network

2e+87F

1.9e+87F [

le+B7F

Se+86

—5e+06

Tine variation in CPU cycles

=-1le+B7

=-1.95e+87

—-2e+B7

I=I|:|u3|||::h|E=-I-|-'|||:|u|:|_55LI - canpus hac:khilzme ——

.»J

Apache+nod_S55L - one switch

Similar timing on
WAN vs. LAN

/ oA

AN

"

188 158 288

Bits guessed of factor q

258

i Attack Summary

s Attack successful, even on a WAN

= Attack requires only 350,000 — 1,400,000
decryption gueries.

= Attack requires only 2 hours.

i Outline

= RSA Overview and data dependencies during
decryption

. Present timing attack

. Results against OpenSSL 0.9.7

> Defenses

Recommended Defense:
RSA Blinding

= Decrypt random number related to g:
1. Compute X’ = g*re mod N, r is random
2. Decryptx =m’
3. Calculate m =m’/r mod N

= Since r is random, the decryption time
should be random

= 2-10% performance penalty

Blinding Works!

Je+d6 T T

Apache with blinding (bit=8)
Apache with blinding {bit=1}
2e+8B6 -

1le+86 [N

—1e+86 q .

—2e+86 - h

-3e+86 F i .

—4e+06 | J .

=5e+86 b

Tine difference in CPU cycles

—-Ge+86 - Z

—Fe+bb6 N

—Be+06 1 1 1 1 1
a ae 1688 158 2688 250

Bits guessed of factor q

i Other Defenses

= Require statically all decryptions to take
the same time

= Pros? Cons?
= Dynamically make all decryptions take
the same time

= Only release decryption answers on some
Interval A

= Pros? Cons?

i Conclusion

= Attack works against real OpenSSL-
based servers on regular PC'’s.

= Well-known optimized algorithms can
easlly leak secrets

= Randomization of decryption time helps
solve problem

Privtrans:
Automatically Partitioning
Programs for Privilege

!'_ Separation

with Dawn Song

i Privileged Programs

= Attackers specifically target privileged programs

« Large number of privileged programs. Ex: network
daemons, setuid(), etc.

= A Privilege may be:
« OS privilege — Ex: opening /etc/passwd
=« Object privilege — Ex: using crypto keys

= Privileges typically needed for small part of execution

A Security Problem with
Privileged C Programs

Run
Root Shell

Install
kernel module

Privileges

-

Operation Privileged
operations

N that don't
require
(finds bug in privileges

non-priv part)

i Privilege Separation

= Privilege separation partitions program into:
=« Privileged Monitor (usually small)
« Unprivileged Slave (much bigger)

= Enforces principle of least privilege
= Monitor exports limited interface
=« OS provides fault isolation between processes

= Previous work:
= Privilege separation on OpenSSH [Provos et al 2003]
« Privman---library assisting privilege separation [Kilpatrick 2003]

Enforcing least privileges

(in a nutshell)

No Privileges

-

N~

(finds bug in
non-priv part)

Operations
that don't
require
privileges

Privileged
operations

J

i Automatic Privilege Separation

= Previous privilege separation done by hand

goal:
Automatically integrate privilege separation to
existing source code

* Privtrans Overview

Source ‘ Few
H Annotationi_

Code
\/_

¢ 9%

| Slave J | Monitor J
Source codeH Source codeH

i Privilege Separation at Runtime

Space

Slave Address

Main
Execution

‘ jaddespn ‘

RPC
Request

RPC
Reply

s

‘ jaddeipn ‘

Monitor Address
Space —
N
»| State
1 Store

Privileged
Server

i

Advantages of Our
Automatic Privilege Separation

Quick and easy to use on existing software
= Can easily re-integrate as source evolves

Strong model of privilege separation
= Any data derived from privileged resource is privileged
= All privileged data protected by monitor
= More secure than just access control

Allows fine-grained policies
= Monitor can allow/disallow any privileged call

Monitor easier to secure
= Monitor small - easier to apply other static/dynamic techniques
= Monitor can be ran on secure host

Talk Outline:
Our Technigues & Results

Techniques in Privtrans:

Data type qualifiers

Static analysis and propagating qualifiers

Qualifier polymorphism and dynamic checks

Other components: State Store, Wrappers, Translation
Policies

Experiment results

i Program type gqualifiers

= Add a type gqualifier to every variable and function

= Privileged — variable or function uses/accesses
privileged resource

« Unprivileged — everything else

= Programmer provides a few initial annotations
= Variables/functions that are known privileged

= Annotations are C attributes
Ex:int __ attribute_ ((priv)) sock;

= Un-annotated variable/function initially assumed
unprivileged

Inferring qualifiers: Static Analysis

= Static analysis infers unknown privileged gqualifiers
« Through assignment
=« Through use in API (i.e., functions declared but not defined)
»« Use as argument or return value to a privileged function

= Result of inference: API calls with privileged arguments
= Monitor execute these calls
=« Monitor API -- only privileged functions in original source

= Privileged qualifiers found using meet-over-path
analysis
« Conservative
= Similar to CQual “taint” analysis [foster99,shankar01]

i Function Argument Polymorphism

= Function may be polymorphic in argument types
= Privileged call — called with privileged arguments

« Unprivileged call — no arguments or return value
privileged

= Static analysis Is conservative
= May not be able to decide statically if call privileged or not
= Must err on conservative side

i A small polymorphic example

int (priv) a;
int (unpriv) b;

!

fexecedin)

monitor.

l

if(...)

true / \false

- N
f exec’ed In
slave.

priv: a)

priv: a,e,c
< e =f(a);

e = f(b);

A

=

c=a Cc =b;
N —

f2(c);

Dataflow tells us f2 should be exec’ed

IN Monitor

Our solution to polymorphism:
Limiting calls to the monitor

= Combine static analysis with runtime information

= |Insert code into slave to dynamically track qualifiers
= Yields check of runtime (dynamic) privileged status
= Improves accuracy of static analysis
= Slave wrappers check flags

= Reduced monitor calls = improved performance
= Monitor must defend against same types of attacks
anyway
= Limit number of calls to monitor

Dynamic Tracking of Privileged
Variables

Int (priv) a;

int (unpriv) b;

Int privvec_f[2];
Int privvec_f2[2];

1

()
true/ \false
privvec_f[1] = E_PRIV; privvec_f1[1] = E_ UNPRIV;
e = priv_f(a, privvec_f); e = f(b);
C=a, C=b;
privvec_{2[1] = E_PRIV; privvec_f2[1] = E_UNPRIV;

N —

priv_f2(c,privvec_f2);

Other components
(More information in paper)

= State store: keeps track of monitor values between
calls

=« Monitor gives slave opaque index of previous values
« Slave does not know anything about internal monitor state
« Monitor can execute on different host than slave

= Wrappers
« Use RPC as generic transport
« Slave wrappers check dynamic qualifiers

s Source-to-source translation — Use CIL [necula et al 02]

i Fine-grained policies
= Limited monitor interface is default protection

= Fine-grained policies can be added
« Policies allow/disallow at function call level

=« Monitor can keep full context of call sequences
—> policies can be precise

= Previous techniques for automatically creating
policies
= Based on FSM/PDA of allowed call sequences
= Based on call arguments

Experimental results:
Changes to code

Program |src lines |# user # calls time to place

Name annotations | changed annotations
automatically

chfn 745 1 12 1 hr

chsh 640 1 13 1 hr

ping 2299 1 31 1.5 hrs

thttpd 21925 |4 13 2 hrs

OpenSSH 98590 |2 42 2 hrs

OpenSSL | 211675 |2 7 20 min

Experimental Results:
API| Exported by the monitor

Name # APl exported by monitor
annotations

chfn 1 pam functions

chsh 1 pam functions

ping 1 socket operations

thttpd 4 socket operations

OpenSSH |2 pam operations/crypto key

operations
OpenSSL |2 private key operations

EXxperiences:
Potential iIssues and solutions

= Changing UID of slave
= complicated but portable in Provos et al
= Our approach: implement new system call

= Distinguish privileged values in a collection
(e.g., array) on slave

= opague monitor identifier suffices

= Other issues discussed In paper

i Result quality and performance

= Our automatic approach results in similar APl to manual
separation in OpenSSH

s Performance overhead reasonable
« Usually < 15% for programs tested, depending on application
= Overhead amortized over total execution

= Overhead dominated by cross-process call time
= SFI can reduce or eliminate this cost

= Works on small and large programs

Conclusion

Type information useful for slicing programs
= Easy to perform on existing programs
= Allows for fine-grained policies
= Ccan re-incorporate privilege separation as source evolves
= Techniques apply to C program — should also work on Windows

Privtrans results similar to manual privilege separation
Improve static analysis precision with dynamic checks

Techniques work on small and large programs

i Questions?

Contact:
David Brumley or Dawn Song

Carnegie Mellon University
{dbrumley,dawn.song}@cs.cmu.edu

i Begin backup slides

= Begin backup slides

Potential Issues of
Automatic Privilege Separation

= May not work on all programs because:
« Socket numbering different
« UID/GID checks different
= Source code defies static analysis

= Collections are hard to interpret
« EX: array of file descriptors

= Opague index returned by monitor often enough
to distinguish priv from unpriv.

i Performance Overhead Numbers

Overhead dominated by cross-domain call
= Similar to Kilpatrick et al.
= No attempt to optimize per-application

= Can be reduced several orders of magnitude by SFI

Call name | Performance penalty factor
socket 8.83
open 7.67
bind 0.76
listen 2.17

i Future Work

= Add pointer tracking for better precision
=« ESp. when to free priv. data

= Incorporate automatic policy generation

s Use attribute information to make better
system call interposition models

i Privileges in a program

A privilege In a program Is:
= An OS Privilege:
= EX: Reading /etc/passwd

= The abllity to access object
« EX: Crypto keys

Many different approaches to
prevent privilege escalation

= Rewrite application in a safe language —
= Find and fix all bugs — impractical
= System-call Interposition — too coarse grained

= Runtime checks (stackguard, etc) — usually applied
to the whole program

i Advantages of dynamic checks

= Improve precision of static analysis

= Do not breach security properties of program.

= Dynamic checks are safe:

= Attacker tries to make privileged call w/o privileges
- fails!

= Attacker tries to make call through monitor
- Monitor API limits restricts types of calls.
—> Monitor policy should disallow.

i Monitor State Store

s Line 2 — Slave asks monitor
to create socket
= Monitor creates socket.
1.int __ ((priv))__ sock; = Stores in state store, returns
2. sock = socket(...); opague index
3. setsockopt(sock,..); = Line 3 — Slave asks monitor
to update socket.

= Slave provides index from line
2.

= Monitor looks up socket
« Performs setsockopt().

i Automatic Privilege Separation

= Previous privilege separation done by hand

Our goal:
Automatically integrate privilege separation to
existing source code

Source J\
Code _}
Privtrans
\f\nnotations\al

