
Introduction to
Program Analysis

Reading: NNH 1.1-1.3, 1.7-1.8

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich

Applications of Program Analysis

• Optimization
– Avoid redundant/unnecessary computation
– Compute in a more efficient way

• Verifying correctness
– Assurance of software
– Finding bugs

• Determining properties
– Performance
– Security and reliability
– Design and architecture

Analysis as an Approximation

• Example: finding divide-by-zero errors

read(x);
if (x > 0)

then y := 1
else y := 0; S; // S is some other statement

z := 2 / y; // could this be an error?

• What could y hold at the last statement?
– In general, anything (since S could assign to y)
– If S doesn’t affect y, one would think the answer is the set {0,1}

Analysis as an Approximation

• If S doesn’t terminate normally, y cannot be 0
• Problem: undecidable to tell if S terminates!
• In general program analysis must compute an

approximation

Quick Undecidability Proof

• Theorem: There does not exist a program Q that
can decide for all programs P, whether P
terminates.

• Proof: By contradiction.
– Assume there exists a program Q(x) that returns true

if x terminates, false if it does not.
– Consider the program “R = if Q(R) then loop.”
– If R terminates, then Q returns true and R loops (does

not terminate).
– If R does not terminate, then Q returns false and R

terminates.
– Thus we have a contradiction, and termination must

be undecidable

Safe Approximations
read(x);
if (x > 0)
then y := 1
else y := 0; S; // S does not affect y

z := 2 / y; // could this be an error?

• What is a safe approximation for the value of y?
– {1}? no
– {0}? no
– {0,1}? yes
– {0,1,43}? yes
– NAT? yes

• Intuition: we want to ensure we find all divide by zero errors

Safe Approximations
read(x);
if (x > 0)
then y := 1
else y := 0; S; // S does not affect y

z := 2 / y; // could this be an error?

• It is safe to say that the value of y is in {0,1}
– We will catch all divide-by-zero errors this way

• Approximating the value of y as {1} is unsafe
– Missing possible behaviors of the program

• Conservative/Safe Analysis
– Computes a larger set of possibilities than will actually occur in program

execution
• Would like to prove that analyses are safe

Precise Approximations
read(x);
if (x > 0)
then y := 1
else y := 2; S; // S does not affect y

z := 2 / y; // could this be an error?

• What is the most precise approximation for the value of y?
– ∅ is the most precise possible answer
– {1,2} is the most precise safe approximation for y
– {1,2,3} is worse, {0,1,2,3} is worst still, NAT is worst of all

• Sets containing 0 may lead to a false positive
• Other inaccuracies could cause problems later on

• A precise analysis will compute as small a set of possibilities for
program execution as it can

WHILE: An Imperative Language

• Categories
– a ∈ AExp arithmetic expressions
– b ∈ BExp boolean expressions
– S ∈ Stmt statements
– x,y ∈ Var variables
– n ∈ Num numerals
– ∈ Lab labels

• Syntax
– a ::= x | n | a1 opa a2

– b ::= true | false | not b | b1 opb b2 | a1 opr a2

– S ::= [x := a] | [skip] | S1; S2

| if [b] then S1 else S2 | while [b] do S

Example WHILE Program

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

Computes the factorial function, with the input in x
and the output in z

Reaching Definitions Analysis

• A variable definition of the form [x := a] may
reach program point P if there is an execution of
the program where x was last assigned a value
at when P is reached.

• Uses
– Optimization

• Does a constant assignment reach a variable’s use?

– Bug finding
• Does a NULL assignment reach a pointer dereference?
• Does a 0 assignment reach a divisor?

Reaching Definitions Example

[y := x]1; ? ? ? ? 1 ?

[z := 1]2; ? 1 ? ? 1 2

while [y>1]3 do ? 1,5 2,4 ? 1,5 2,4

[z := z * y]4; ? 1,5 2,4 ? 1,5 4

[y := y – 1]5; ? 1,5 4 ? 5 4

[y := 0]6; ? 1,5 2,4 ? 6 2,4

RD at entry RD at exit
x y z x y z

