PRETfix

(continued)

Reading: A Static Analyzer for Finding
Dynamic Programming Errors

17-654/17-765
Analysis of Software Artifacts
Jonathan Aldrich

PREfix Scaleabllity

. : - PREQxX
. number of number o PREIx parse
Program Language . stmulation
- files lines tme
time

Mozlla - bU3 34060 3 2 hours & hours
28 minutes 27 minutes
Apache C 69 48393 6 minutes Y minutes
G Demo L 9 2655 | second |5 seconds

Table I: Performance on Sample Public Domain Software

e Analysis cost = 2x-5x build cost
— Scales linearly

2/15/2005

* Probably due to fixed cutoff on number of paths

Value of Interprocedural Analysis

[\

execution total using NMULL
statement branch predicate memory
model set time warning uninit pointer '
. coverage coverage coverage : leak
(minutes) count Memory derel
none 12 90, 1% 87 8% 83.9% 15 2 11 il
system 13 88 9% 8. 3% 82.1% 25 o] 12 7
23 73.1% 73.1% f8.0% 248 110 24 124

system & auto

Table L1I: Relationships between Available Models, Coy L‘I‘LI;:L‘WHII] Time, and Defects Reported

* 90% of errors require models (summaries)

2/15/2005

You don’t need every path

—— Execution Time —s—\Warning Count

350 4

300 A _.,/——’/"_/_/.
250 -
200 -
150
100 4
50 -
0 50 100 150 200 250 300 350 400

Path Limit

e Get most of the warnings with 100 paths

2/15/2005

Empirical Observations

 PREfix finds errors off the main code paths
— Main-path errors caught by careful coding and testing

e Ul Is essential
— Text output is hard to read
— Need tool to visualize paths, sort defect reports

* Noise warnings

— Real errors that users don’t care about
* E.g., memory leaks during catastrophic shutdown

2/15/2005

PREfix Summary

e Great tool to find errors

— Can’t guarantee that it finds them all
* Role for other tools (e.g., Fluid)

— Complements testing by analyzing uncommon paths

— Focuses on low-level errors, not logic/functionality
errors
* Role for functional testing

 Huge impact
— Used widely within Microsoft
— Lightweight version will be part of next Visual Studio

2/15/2005

Concurrency Assurance
In Fluid

Reading: Assuring and Evolving
Concurrent Programs:
Annotations and Policy

17-654/17-765
Analysis of Software Artifacts
Jonathan Aldrich

Find the Concurrency Bugs!

public class AppenderAttachablelmpl {
protected Vector appenderList;

public void addAppender(Appender newAppender) {
if (newAppender == null) return;
if (appenderList == null) appenderList = new Vector(1);
if (lappenderList.contains(newAppender)) {
appenderList.addElement(newAppender);

}

}
public int appendLoopOnAppenders(LoggingEvent event) {

int size = 0;
Appender appender;

if (appenderList != null) {
size = appenderList.size();
for (int1=0; i< size; i++) {
appender = (Appender) appenderList.elementAt(i);
appender.doAppend(event);

}
}

return size;

}
public void removeAppender(Appender appender) {

if (appender == null | | appenderList == null) return
appenderList.removeElement(appender);

?/15/2}005
. Note: Vector’'s methods are synchronized

PREfIX: Language-Level Errors

* Error defined by language
— Precise characterization of error
— Any program that manifests that error Is incorrect
— Easy to define fully automated analysis
 Example: null pointer dereference
— Occurs when *p is executed and p == null
— Can be found by may-be-null analysis

2/15/2005

Concurrency Errors

 Example: data race condition

» (Definition from Savage et al., Eraser: A Dynamic Data Race Detector for Multithreaded

Programs)
— Two threads access the same variable v
— At least one access is a write

— No explicit mechanism prevents the accesses from being
simultaneous

2/15/2005

10

Concurrency Errors

 Example: data race condition

» (Definition from Savage et al., Eraser: A Dynamic Data Race Detector for Multithreaded
Programs)

— Two threads access the same variable v
— At least one access is a write
— No explicit mechanism prevents the accesses from being
simultaneous
e Challenges

— Difficult to check statically
 How to tell if accesses can be simultaneous?
* How to tell what synchronization mechanism is used?

— Not always an error
 Race may not affect correctness

 PREfix approach will not work
— Too many possibilities to explore, too many false positives

2/15/2005 11

Would Testing/Inspections Work?

2/15/2005

12

Would Testing/Inspections Work?

e Testing

— Difficult because concurrency errors are non-
deterministic

e |Inspections

— Concurrency errors are often non-local
 Like errors that PREfix finds

— Require knowledge of programmer intent

2/15/2005 13

Concurrency Models

* Describe programmer’s intent
— Data Y Is protected by lock X
— Data Z is only accessed by one thread

— Data Y and Z must be updated together
 TO maintain some invariant

— The race on variable V Is harmless

e Can be checked against code
— Using local static analysis

2/15/2005

14

Challenge:
Cost of Documenting Models

e Fluid’'s approach?

2/15/2005

15

Challenge:
Cost of Documenting Models

* Fluid’'s approach
— Check consistency
 No model = No reported errors

— Incrementality
* Incremental benefit for each unit of cost

— Usability
* Investment in tools and usage scenarios

2/15/2005

16

How Incrementality Works

Call Graph of Program
« How can one provide

iIncremental benefit with
mutual dependencies?

2/15/2005

17

How Incrementality Works

Call Graph of Program
partition call graph

’ ssured regig
)) (D
2
— Can assure property of a

subgraph cut point
— Assurance is contingent on

accuracy of trusted cut

point method annotations

 How can one provide
iIncremental benefit with
mutual dependencies?

o Cut points
— Method annotations

2/15/2005 18

BoundedFIFO

public class BoundedFIFO {
LoggingEvent[] bur;
int numElts = 0, first = 0, next = 0, size;

public void put(LoggingEvent o) {
if(numElts = size) {
bur[next] = o;
if(++next = = size) next = 0;
NnuMEIlts++;

public BoundedFIFO(int size) { }
if(size < 1) throw new lllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

}
public int getMaxSize() { return size; }
[* length, wasEmpty, wasFull, and isFull *
public LoggingEvent get() { * are annotated like getMaxSize */
if(numElts == 0) return null;
LoggingEvent r = buf[first]; }
if(++first == size) first = O;
numeEelts--;
returnr;
}

2/15/2005 19

BoundedFIFO

public class BoundedFIFO {
[*@unique*/ LoggingEvent[] bur; /@ {[] in Instance}
int numeElts = 0, first = 0, next = 0, size;

public BoundedFIFO(int size) {
if(size < 1) throw new lllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

public LoggingEvent get() {
if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = O;
numeEelts--;
returnr;

} 2/15/2005

public void put(LoggingEvent o) {
if(numElts = size) {
bur[next] = o;
if(++next = = size) next = 0;
NnuMEIlts++;

public int getMaxSize() { return size; }

[* length, wasEmpty, wasFull, and isFull *
* are annotated like getMaxSize */

20

BoundedFIFO

public class BoundedFIFO {
[*@unique*/ LoggingEvent[] bur; /@ {[] in Instance}
int numElts = 0, first = 0, next = 0, size;

public BoundedFIFO(int size) {
if(size < 1) throw new lllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

/@ writes this. Instance; reads nothing

public LoggingEvent get() {
if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = O;
numeEelts--;
returnr;

} 2/15/2005

/@ writes this. Instance; reads nothing

public void put(LoggingEvent o) {
if(numElts = size) {
bur[next] = o;
if(++next = = size) next = 0;
NnuMEIlts++;

/@ writes nothing; reads this.Instance

public int getMaxSize() { return size; }

[* length, wasEmpty, wasFull, and isFull *
* are annotated like getMaxSize */

21

BoundedFIFO

public class BoundedFIFO {
[*@unique*/ LoggingEvent[] bur; /@ {[] in Instance}
int numElts = 0, first = 0, next = 0, size;

//@ lock BufLock is this protects Instance

public BoundedFIFO(int size) {
if(size < 1) throw new lllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

}

/@ requires BufLock
//@ writes this. Instance; reads nothing

public LoggingEvent get() {
if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = O;
numeEelts--;
returnr;

} 2/15/2005

/@ requires BufLock
/@ writes this. Instance; reads nothing

public void put(LoggingEvent o) {
if(numElts = size) {
bur[next] = o;
if(++next = = size) next = 0;
NnuMEIlts++;

}

/@ requires BufLock
//@ writes nothing; reads this.Instance

public int getMaxSize() { return size; }

[* length, wasEmpty, wasFull, and isFull *
* are annotated like getMaxSize */

22

BoundedFIFO

public class BoundedFIFO {
[*@unique*/ LoggingEvent[] bur; /@ {[] in Instance}
int numElts = 0, first = 0, next = 0, size;

//@ lock BufLock is this protects Instance

I*@ letset InfoMethods = getMaxSize, length, *
* wasEmpty, wasFull, isFull */

public BoundedFIFO(int size) {
if(size < 1) throw new lllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

}

//@ requires BufLock

//@ writes this. Instance; reads nothing

//@ safe with InfoMethods

public LoggingEvent get() {
if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = O;
numeEelts--;
returnr;

} 2/15/2005

/@ requires BufLock
/@ writes this. Instance; reads nothing
/@ safe with InfoMethods
public void put(LoggingEvent o) {
if(numElts = size) {
bur[next] = o;
if(++next = = size) next = 0;
nuMElts++;

}

/@ requires BufLock
//@ writes nothing; reads this.Instance

/@ safe with InfoMethods
public int getMaxSize() { return size; }

[* length, wasEmpty, wasFull, and isFull *

* are annotated like getMaxSize

BoundedFIFO Client

public class FIFOClient {
private final BoundedFIFO fifo = ...;

public void putter(LoggingEvent e) {
synchronized(fifo) {
while(fifo.isFullO) {
try { fifo.wait(); }
catch(InterruptedExn ie) {}
}

fifo.put(e);
if(fifo.wasEmptyO) fifo.notify();

2/15/2005

public LoggingEvent getter() {
synchronized(fifo) {
LoggingEvent €;
while(fifo.length() == O) {
try { fifo.wait(); }
catch(InterruptedExn ie) { }
}
e = fifo.get();
if(fifo.wasFullO) fifo.notify();
return e ;

}

public int length() {

synchronized(fifo) { return
fifo.length(); }

24

Lock Analysis, Fluid Style

L attice
T = unknown

e Lattice is a tuple of custom lattices
¥ 1 = locked

— One for each variable in the program

 Forward analysis
e Injected tuple « = { L for x if /* @requires x */ annotation, T otherwise}

« Simple transfer functions (ois input data flow value)

— fYA([synchronized(x) { S }],0)= 0 [x » L] // only for analysis of S

=0 /l for subsequent statements
— fYA(x:=f(e)],o0) =0 // nothing special at method calls
- f*A(S,0)=o0 // for all other statements

Report errors
— Aty :=f(e)], if * @requires x */ in annotations(f) and LA(Z,xX) = T
— Ifyisusedin?, /* @lock x protects y */ is in scope and LA (£,x) =T

2/15/2005 25

Uniqueness Analysis

L attice
T = unknown

e Lattice is a tuple of custom lattices :
P 1 = unique

— One for each variable in the program
 Forward analysis
e Injected tuple . = { L for x if /* @unique x */ annotation, T otherwise}

 Example transfer functions (ois input data flow value)

— fYA(x = y]4,0) =0[xpT,y»T] Ilify e LV(f)

= 0 [X »0[X]] INifty ¢ LV(f)

— fYA(x :=1f(y)),0) =o[x~annot(f),y~T] I[ify e LV()
/[and annot(arg(f))#borrowed

= 0 [X »annot(f) Il otherwise

Report errors
— At [x:=f(y)], if /¥ @unique arg */ in annotations(f) and UA(Zy) = T
— If y is annotated /* @unique */ but UA(Z,x) = T for some statement ¢

2/15/2005 26

Summary: PREfix vs. Fluid

 PREfiX e Fluid
— Finds language-level — Finds concurrency
errors errors
— Fully automatic — Requires annotations
— Interprocedural — Intra-procedural with
— Goal: find bugs cut points

— Goal: ensure absence
of certain kinds of
bugs

2/15/2005 27

