
Course Introduction

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich



Introductions

• Instructor
– Jonathan Aldrich

aldrich+ at cs.cmu.edu

• TAs
– Nicholas Sherman

nds at cs.cmu.edu
– Dean Sutherland

dfsuther at cs.cmu.edu

• Students
– What would you like to learn from this course?



What is Analysis?

My definition:
The systematic examination of an artifact 
to determine its properties



What to Analyze?

• Software engineering degree
⇒ Analyze software artifacts

• Product primacy
⇒ Focus on analysis of code
⇒ Also consider analysis of designs, tests, etc.

• Properties
– Functional: code correctness
– Quality attributes: performance, reliability, 

security



Course Goals

• Understanding
– Where different analyses are appropriate
– Tradeoffs between analysis techniques
– Theory sufficient to evaluate new analyses

• Experience
– Writing simple analyses
– Applying analysis to software artifacts



Course Structure

Core Analysis Concepts
Taught through dataflow analysis
• Abstraction - Lattice theory
• Soundness and completeness
• Flow-, path-, context-sensitivity
• Interprocedural analysis
• Incrementality and scalability

Code Analysis Applications
• Bug-finding (PREfix)
• Concurrency assurance (Fluid)
• Alias Analysis (Steensgaard)
• Optimization
• User-defined Properties (Metal)

Life Cycle
• Architecture
• Design
• Testing
• Reverse Eng.

Other Techniques
• Model Checking
• Theorem Proving
• Dynamic Anal.
• Type Systems

Non-Functional
• Performance
• Reliability
• Security
• Others?



Analysis Tradeoffs

Automated,
Incremental

Dynamic 
(testing, 
profiling)

Manual,
Global

Static (dataflow, 
model checking)

Common Theme: engineering tradeoffs between different 
analysis techniques

Increasing Cost

Increasing Guarantees



Evaluation

• Class participation (~10%)
– Discussion and presentations

• Homework (30%)
– Basic understanding of analysis techniques
– Engineering tradeoffs

• Mini-projects (30%)
– Evaluate analysis tools on studio or other project

• Written reports and in-class presentations
– Write and apply custom analyses

• Midterm and final exams (10% and 20%)
– Theory and engineering



Ph.D. Projects

• Possible topics
– Literature survey

• Study techniques, put into framework, identify open problems

– Comparative evaluation
• Your experience with multiple techniques or tools
• Higher standard than mini tool evals

– Development of a new analysis technique
– Application of an analysis technique to a new problem domain

• Requirements
– Written report

• Length depends on nature of project

– Class presentation

• Details to be arranged with instructor



Readings

• Textbook
– Principles of Program Analysis by Neilson, Neilson, 

and Hankin
– Won’t be in the bookstore until end of January

• Badly timed re-printing
• Will do much of the reading before then
• Try to get it online—a link to bookstores is on the course 

home page
• Share if you can
• I’ll do my best to make the lectures self-contained

• Papers from the analysis literature
– Will be provided in class and on the web



Course Emphasis

• Differs slightly from textbook
– Broader: we will analyze non-code artifacts 

and consider techniques not in the book
– Shallower: we will not cover all the theory and 

techniques in the book
– Motivation: we focus on engineering rather 

than optimization

• The text will still be a very useful reference



Free Advice

• Slides will be provided on the web
– Focus on asking, answering questions
– Write down what’s NOT in the slides

• Come to class
– Participation is required and graded
– Exercises worked in class will help you
– The book and papers are terse and 

incomplete


