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Field problems “happen”
Program testing can be used 

to show the presence of bugs, 
but never to show their absence! 

-Dijkstra

Statement coverage, branch coverage, all 
definitions coverage, all p-uses coverage, all 
definition-uses coverage finds only 50% of a 

sample of field problems in TeX
- Foreman and Zweben 1993

Better, cheaper, faster… pick two
-Anonymous 



Take away

• Field problem predictions can help lower the 
costs of field problems for software producers 
and software consumers

• Metrics based models are better suited to model 
field defect when information about the 
deployment environment is scarce

• The four categories of predictors are product, 
development, deployment and usage, and 
software and hardware configurations

• Depending on the objective, different predictions 
are made and different predictions methods are 
used



Benefits of field problem predictions

• Guide testing (Khoshgoftaar et. al. 1996)

• Improve maintenance resource allocation 
(Mockus et. al. 2005)

• Guide process improvement (Bassin and 
Santhanam 1997)

• Adjust deployment (Mockus et. al. 2005)

• Enable software insurance (Li et. al. 2004)



Lesson objectives

• Why predict field defects?

• When to use time based models?

• When to use metrics based models?

• What are the component of metrics based 
models?

– What predictors to use?

– What can I predict?

– How do I predict?



Methods to predict field problems

• Time based models

– Predictions based on the time when problems 
occur

• Metrics based models

– Predictions based on metrics collected 
before release and field problems 



The idea behind time based models

• The software system has a chance of 
encountering problems remaining during every 
execution

– More problems there are in the code, higher the 
probability a problem will be encountered

• Assuming that a problem is discovered and is 
removed, the probability of encountering a 
problem during the next execution decreases.

• The more executions, higher the number of 
problems found 



Example



Example

• λ(t) =107.01*10* e – 10 * t 

• Integrate the function 
from t=10 to infinity, to 
get ~43 problems



Key limitation

• In order for the defect occurrence pattern 
to continue into future time intervals, 
testing environment ~ operating 
environment

– Operational profile

– Hardware and software configurations in use

– Deployment and usage information



Situations when time based models 
have been used

• Controlled environment

– McDonell Douglas (defense contractors 
building airplanes) studied by Jelinski and 
Moranda

– NASA projects studied by Schneidewind



Situations when time based models 
may not appropriate

• Operating environment is not known or 
infeasible to test completely

– COTS systems

– Open source software systems 



Lesson objectives

• Why predict field defects?

• When to use time based models?

• When to use metrics based models?

• What are the component of metrics based 
models?

– What predictors to use?

– What can I predict?

– How do I predict?



The idea behind metrics based models

• Certain characteristics make the presences of 
field defects more or less likely

– Product, development, deployment and usage, 
software and hardware configurations in use

• Capture the relationship between predictors and 
field problems using past observations to predict 
field problems for future observations



Difference between time based models 
and metrics based models

• Explicitly account for characteristics that 
can vary

• Model constructed using historical 
information on predictors and field defects



Difference between time based models 
and metrics based models

• Explicitly account for characteristics that 
can vary

• Model constructed using historical 
information on predictors and field defects

Upshot: more robust against 
differences between 

development and deployment



An example model

RLSTOT:
vertices plus 
arcs within 
loops in flow 
graph
NL: 
loops in a flow 
graph
VG: 
Cyclomatic 
complexity

Khoshgoftaar et. al 1993



Lesson objectives

• Why predict field defects?

• When to use time based models?

• When to use metrics based models?

• What are the component of metrics based 
models?

– What predictors to use?

– What can I predict?

– How do I predict?



Definition of metrics and predictors

• Metrics are outputs of measurements, 
where measurement is defined as the 
process by which values are assigned to 
attributes of entities in the real world in 
such a way as to describe them according 
to clearly defined rules.
– Fenton and Pfleeger

• Predictors are metrics available before 
release



Categories of predictors

• Product metrics

• Development metrics

• Deployment and usage metrics

• Software and hardware configurations 
metrics



Categories of predictors

• Product metrics

• Development metrics

• Deployment and usage metrics

• Software and hardware configurations 
metrics

Help us to think about the 
different kinds of attributes that 

are related to field defects



The idea behind product metrics

• Metrics that measure the attributes of any 
intermediate or final product of the 
development process

– Examined by most studies

– Computed using snapshots of the code

– Automated tools available



Sub-categories of product metrics

• Control: Metrics measuring attributes of 
the flow of the program control

– Cyclomatic complexity

– Nodes in control flow graph



Sub-categories of product metrics

• Control

• Volume: Metrics measuring attributes 
related to the number of distinct operations 
and statements (operands)

– Halstead’s program volume

– Unique operands



Sub-categories of product metrics

• Control

• Volume

• Action: Metrics measuring attributes 
related to the total number of operations 
(line count) or operators

– Source code lines

– Total operators



Sub-categories of product metrics

• Control

• Volume

• Action

• Effort: Metrics measuring attributes of the 
mental effort required to implement

– Halstead’s effort metric



Sub-categories of product metrics

• Control

• Volume

• Action

• Effort

• Modularity: Metrics measuring attributes related 
to the degree of modularity

– Nesting depth greater than 10

– Number of calls to other modules



Commercial and open source tools that  
compute product metrics automatically



The idea behind development metrics

• Metrics that measure attributes of the 
development process

– Examined by many studies

– Computed using information in change 
management and version control systems



Rough grouping of development 
metrics

• Problems discovered prior to release: 
metrics that mention measuring attributes 
of the problems found prior to release. 

– Number of field problems in the prior release, 
Ostrand et. al.

– Number of development problems, Fenton 
and Ohlsson

– Number of problems found by designers 
Khoshgotaar et. al. 



Rough grouping of development 
metrics

• Problems discovered prior to release 

• Changes to the product: metrics that 
mention measuring attributes of the 
changes made to the software product. 
– Reuse status, Pighin and Marzona

– Changed source instructions, Troster and 
Tian

– Number of deltas, Ostrand et. al. 

– Increase in lines of code Khoshgotaar et. al.



Rough grouping of development 
metrics

• Problems discovered prior to release

• Changes to the product 

• People in the process: metrics that 
measure attributes of the people in the 
development process. 
– Number of different designers making 

changes, Khoshgoftaar et. al. 

– Number of updates by designers who had 10 
or less total updates in entire company 
career, Khoshgoftaar et. al. 



Rough grouping of development 
metrics

• Problems discovered prior to release

• Changes to the product

• People in the process

• Process efficiency: metrics that measure 
attributes of the efficiency of the 
development process. 
– CMM level, Harter et. al. 

– Total development effort per 1000 executable 
statements, Selby and Porter 



Development metrics in bug tracking 
systems and change management systems



The idea behind deployment and usage 
metrics

• Metrics that measure attributes of the 
deployment of the software system and 
usage in the field

– Examined by few studies

– No data source is consistently used



Examples of deployment and usage 
metrics

• Khoshgoftaar et. al. (unit of observation is 
modules)

– Proportion of systems with a module installed 

– Execution time of an average transaction on a 
system serving customers  

– Execution time of an average transaction on a 
systems serving businesses 

– Execution time of an average transaction on a 
tandem system 



Examples of deployment and usage 
metrics

• Khoshgoftaar et. al. 

• Mockus et. al. (unit of observation is 
individual customer installations of 
telecommunications systems)

– Number of ports on the customer installation

– Total deployment time of all installations in the 
field at the time of installation



Deployment and usage metrics may be 
gathered from download tracking 

systems or mailing lists



The idea behind software and 
hardware configurations metrics

• Metrics that measure attributes of the 
software and hardware systems that 
interact with the software system in the 
field

– Examined by few studies

– No data source is consistently used



Examples of hardware and software 
configurations metrics

• Mockus et. al. (unit of observation is 
individual customer installations of 
telecommunications systems)

– Systems size of the installation (large or 
small/medium)

– Operating system  of the installation 
(proprietary, Linux, or Windows)



Software and hardware configurations 
metrics can be gathered from bug 
tracking systems and mailing lists



Metrics to collect

• Prior work shows each category of metrics 
to be important

– In general, more metrics will result in more 
accurate predictions

• A cost-benefit analysis is recommended 
(IEEE standard on software quality 
metrics)



Lesson objectives

• Why predict field defects?

• When to use time based models?

• When to use metrics based models?

• What are the component of metrics based 
models?

– What predictors to use?

– What can I predict?

– How do I predict?



Predictions

• A relationship

– What predicts field problems?

• A categorization

– Is it risky or not (is the number of field 
problems above a threshold)?

• A number

– What is the number of field problems?



Importance of relationships

• Evaluation of the development process

• Better allocation of maintenance resources

• Improvement of testing efforts 

Harter et. al. evaluated the development process by 
examining the CMM level of the organization 

Bassin and Santhanam evaluate the development 
process by examining the distribution of ODC triggers of 

problems found during development 



Importance of relationships

• Evaluation of the development process

• Better allocation of maintenance resources

• Improvement of testing efforts 

Mockus et. al establish the relationship between the 
operating systems platform (i.e. a proprietary OS, Linux, 

and Windows) and field problems 



Importance of relationships

• Evaluation of the development process

• Better allocation of maintenance resources

• Improvement of testing efforts 

• Categorization predictions and number 
predictions are based on relationships



How to evaluate relationships

1. Show high correlation between the 
predictor and field defects

2. Show that the predictor is selected using 
a model selection method

3. Show that the accuracy of predictions 
improves with the predictor included in 
the prediction model



Importance of categorizations

• Focus testing in the appropriate places

– Cost of fixing problems later is 10x times 
more expensive



How to evaluate categorizations

• Type I error (false positive)

– An observation is classified as risky when the 
observation is actually not risky



How to evaluate categorizations

• Type I error

• Type II error (false negative)

– An observation is classified as not risky when 
the observation is actually risky 



How to evaluate categorizations

• Type I error

• Type II error

• Overall rate of error 

– Either type I or type II error



Trade-offs between 
type I and type II error

• Reducing false negatives is usually more 
important

– Main objective of classification is to focus resources 
on risky modules to prevent field problems (Jones et. 
al.)

• Resources are limited so high type I errors and 
overall errors are also not desirable

– The costs of misclassification need to be considered 
in each setting to select an optimal balance 
(Khoshgoftaar et. al.)



Importance of a numerical output 

• Allocate the appropriate amount of 
maintenance resources

– Not having sufficient resources may delay 
fixing field problems, which results in reduced 
customer satisfaction (Chulani et. al.) 

– Allocating too many maintenance resources 
hinders other efforts (e.g. development) 



Importance of a numerical output 

• Allocate the appropriate amount of 
maintenance resources

• Plus all the benefits of a categorization 
and a relationship



How to evaluate a numerical output

• The absolute average error (AAE) and its 
standard deviation

– How much a typical prediction will be off by on 
average 



How to evaluate a numerical output

• The absolute average error (AAE) and its 
standard deviation

• The average relative error (ARE) and its 
standard deviation 

– The AAE can be misleading when the 
predicted number of field problems differs 
significant between observations

– Relative to the actual number of field 
problems, how much a typical prediction will 
be off by on average 



Lesson objectives

• Why predict field defects?

• When to use time based models?

• When to use metrics based models?

• What are the component of metrics based 
models?

– What predictors to use?

– What can I predict?

– How do I predict?



The idea behind modeling methods

• Build models using historical information 
on the predictors and the observed field 
defects

• Predicts for a new observation given 
predictors’ values



Level 1 modeling techniques

• Linear modeling (logistic regression)

• Trees

• Discriminant analysis

• Rules

• Neural networks

• Clustering

• Sets

• Linear programming

• Heuristics or any level 2 method with heuristics



Example: the trees technique

• Creating partitions based on predictor 
value that minimizes the error in 
classifications within partitions

• Repeat process until 
– Error within each partition is below some limit

– Number of observations within each partition 
is below some limit 

• The observations within each partition 
determine the class of the partition



Example description

• Predictor A has three values: 

– 1, 2, 3

• Predictor B has two values: 

– 1, 2

• The field problem metric has two classes 
(values): 

– 1 (at least 1 field problem), 0 (no field 
problems)



Example training set
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problems metric 

Value of Predictor BValue of Predictor A



Example stopping criteria

• The measure of error is: 

– Σ partitions Σ all observations in partition |yi - ỹ|  

• ỹ = mean of classifications in the partition

• The minimum error in partition: 

– 0

• The minimum number of observation in 
partition:

– 2



Example iteration 1

• Predictor A <=1

– error in partition 1 
(A<=1) (0 + 0 + 0 + 0) 
= 0
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Class of 
the field 

problems 
metric 

Value of 
Predictor 

B

Value of 
Predictor 

A



Example iteration 1

• Predictor A <=1

– error in partition 1 
(A<=1) (0 + 0 + 0 + 0) 
= 0

– error in partition 2 
(A>1) 1/2 + 1/2 +1/2 + 
1/2 + 1/2 + 1/2) = 3 

• total error = 3
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011

Class of 
the field 

problems 
metric 

Value of 
Predictor 

B

Value of 
Predictor 

A



Example iteration 1

• Predictor A<=2

– error in partition 1 
(A<=2) (1/3 + 1/3 +1/3 
+ 1/3 + 2/3 + 2/3) 
=2.667
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Class of 
the field 

problems 
metric 

Value of 
Predictor 

B

Value of 
Predictor 

A



Example iteration 1

• Predictor A<=2

– error in partition 1 
(A<=2) (1/3 + 1/3 +1/3 
+ 1/3 + 2/3 + 2/3) 
=2.667

– error in partition 2 
(A>2) (1/4 + 1/4 +1/4 
+3/4)  = 1.5 

• total error = 4.167 

123

013

023

013

112

112

021

011

021

011

Class of 
the field 

problems 
metric 

Value of 
Predictor 

B

Value of 
Predictor 

A



Example iteration 1

• Predictor B <=1

– error in partition 1 
(B<=1) (1/3 + 1/3 +1/3 
+ 1/3 + 2/3 + 2/3) = 
2.667

123
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023

013

112

112

021

011

021

011

Class of 
the field 

problems 
metric 

Value of 
Predictor 

B

Value of 
Predictor 

A



Example iteration 1

• Predictor B <=1

– error in partition 1 
(B<=1) (1/3 + 1/3 +1/3 
+ 1/3 + 2/3 + 2/3) = 
2.667

– error in partition 2 
(B>1) (1/4 + 1/4 +1/4 
+3/4)  = 1.5

• total error = 4.167

123

013

023

013

112

112

021

011

021

011

Class of 
the field 

problems 
metric 

Value of 
Predictor 

B

Value of 
Predictor 

A



Example iteration 1

• Based on error, partition using A<=1

Recall stopping criteria is error = 0 or obs <=2 



Example iteration 2

• Predictor A <=2

– error in partition 1 
(A<=2)  (0 + 0) = 0
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Example iteration 3



Example: the trees technique

• To predict, an observation is sent through 
the tree until it reaches a leaf

• Class of the leaf (i.e. partition) is taken to 
be the predicted value



Example prediction

• Example: A = 3, B = 1



Example prediction

• Example: A = 3, B = 1

• Classification = 0 (not risky)



Example prediction

• Example: A = 2, B = 2



Example prediction

• Example: A = 2, B = 2

• Classification =1 (risky)



Example prediction

• Example A=3, B=2 

• Classification = .5 ? 
You have to make a 

trade off here, but it will 
be an informed 

decision



Level 2 modeling techniques

• Linear modeling (linear regression and 
negative binomial regression)

• Non-linear regression

• Trees

• Neural networks



Lesson objectives

• Why predict field defects?

• When to use time based models?

• When to use metrics based models?

• What are the component of metrics based 
models?

– What predictors to use?

– What can I predict?

– How do I predict?



Recap

• Field defect predictions can lower the costs of 
field defects by:
– Guiding testing
– Improving maintenance resource allocation
– Guiding process improvement
– Adjusting deployment
– Enabling software insurance

• Metrics based models are better when 
deployment and  testing environment differ or 
when there is insufficient resources to test all 
configurations



Recap

• Metrics based models use:
– Product metrics (most often)
– Development metrics (next most often)
– Deployment and usage metrics 

(infrequently)
– Software and hardware configurations 

metrics (infrequently)
• Trees is the most widely used method to 

produce a level 1 output



Partial ordering of methods using 
accuracy



Drawback of using accuracy as the 
only criterion of evaluation

• Sometimes accurate predictions is not the 
objective:

– Planning for improvement



An explicable model



A less explicable model
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