
Project 1:

Interprocedural Exception Analysis

17-654/17-754: Analysis of Software Artifacts
Jonathan Aldrich (jonathan.aldrich@cs.cmu.edu)

Out: Thursday, February 10, 2005
Due: Thursday, February 24, 2005 (11:59 pm)

100 points total

The goals of this project are to write a real analysis based on traversing
the abstract syntax tree of a program, to build a simple call graph, to put
the iterative worklist analysis algorithm to work in practice, and to get a
taste of interprocedural analysis.

Pairs. You may work on this programming project in pairs. Pair projects
will be given a single grade. You are free to choose your own partner, sub-
ject to one constraint: the instructors reserve the right to assign pairs in the
case that students lacking significant previous Java experience are unable
to find a more experienced partner. Please be sensitive to this criterion as
you pair up.

Collaboration Policy. It is permitted to discuss the homework prob-
lems in general terms, to study together, to help each other with notation,
and to communicate clarifications from the instructor and TAs. It is not
permitted to discuss specific answers to homework, or to look at another
student’s solution. Partners working in pairs should share the workload
equally and ensure they are both familiar with all of the material. This pol-
icy will apply to all future assignments (although not all future assignments will
necessarily be done in pairs).

Hand-in Instructions. Same as Project 0. Hand in all Java files that were
added or modified for all parts of this assignment. Also hand in sample
output from running your analysis on the input file Project1Example.java
provided as part of this assignment. If you are working in pairs, include
readme.txt file with the names of the two partners. Put all of the above files
into a zip file and hand in via Blackboard.

1



1 Intra-Procedural Exception Analysis (30 points)

Java’s type system tracks the exceptions that could be thrown by a method
using throws clauses on its method declarations. This is important for
engineers who are using a library, so they know what errors they might
need to handle.

The problem is, Java only tracks so-called checked exceptions which are
not subclasses of RuntimeException. Sometimes programmers get lazy
and don’t want to specify which exceptions are thrown by a function. In-
stead, they throw a RuntimeException so they don’t have to do the spec-
ification work. Unfortunately, this tends to get them in trouble later: since
there is no documentation about what exceptions a function might throw,
the caller may not handle all exceptions appropriately, causing errors when
the program is executed.

In this assignment, you’ll build an analysis for tracking all exceptions,
including RuntimeExceptions that aren’t tracked by Java. First, you
will build an intra-procedural version of the analysis. Intra-procedural
means that the analysis is done one procedure at a time, and only relies on
type information of called procedures. Since some procedures may throw
RuntimeExceptions that aren’t declared in their type, our analysis may
miss some exceptions that might actually be thrown as a result of callees
throwing runtime exceptions. We’ll find a solution inter-procedural analy-
sis, in section 3.

For section 1, write an intra-procedural exceptions analysis that com-
putes, for each method, the set of exceptions that method may throw, in-
cluding runtime exceptions. When you come to a method call, you should
assume it might throw only the exceptions that it declares. Your analysis
will be structured as a visitor over the abstract syntax tree, similar to what
you did in Programming 0.

To get you started, we’ve provided an updated file Project0Analysis.java,
a file Util.java with some utilities that you might find useful, and a file
MethodCollectionVisitor.java that gathers up all the methods in
a file and groups them by name. MethodCollectionVisitor is use-
ful when you want to find out which methods might be called at a given
call site in the program. Your solution should be implemented by editing
Proj0Analysis.java in the appropriate places and adding other files as
needed. The file sample-output.txt shows the format that your output
should take for each part, on a sample input file Project1Example.java.

Hints:

2



• You should not use the getMethodBinding function in interface
IMethodCall to find out who you are calling. This method returns
only the static method called, not the entire set of methods that could
be called dynamically. Additionally, it looks like there might be a
bug in the current implementation. Use the GetMethods function of
MethodCollectionVisitor instead–it returns a java.util.Set
of IMethods.

• Don’t forget that the expression catch(ExnType e) {...} will catch
expressions of type ExnType or any subclass of ExnType.

• You should assume that all exceptions are thrown explicitly; i.e., there
is no need to guess when a NullPointerExceptionmight be thrown
by the system when a null pointer is dereferenced.

• You only need to correctly handle the constructs in the example file
we gave you. However, your implementation should be general enough
to work if these same constructs are used in other ways in another file.

• The order in which results are reported does not matter.

2 Call Graph Analysis (30 points)

Write an analysis to construct a call graph of the program. Your analysis
should output a pair [m1, m2] if method m1 may call method m2. In Part
3, you will be using this call graph backwards, so make sure your data
structures allow you to query the data structure for the callers of a method
as well as the callees of a method.

3 Inter-Procedural Exception Analysis (50 points)

In this part, you will extend the code written above to an inter-procedural
data flow analysis for tracking which exceptions may be thrown by a func-
tion. Your data flow values will be sets of exceptions. Your data flow anal-
ysis will work over the interprocedural control flow graph (ICFG) which
you have just constructed in part 2. However, since exceptions are thrown
by a callee to the caller, exception data flow information flows in the re-
verse direction of calls in the ICFG, so you will have to reverse the edges
computed in Part 2.

3



You will need to keep a data structure which stores for each method,
what set of exceptions that method might throw. Use your knowledge of
may analyses to determine how to initialize this data structure. Take the
iterative worklist algorithm discussed in class (and in NNH 2.4) and adapt
it to work over the ICFG. To make this work, think of the nodes in the
ICFG as methods, and the transfer functions for the nodes are basically
the intra-procedural analysis you wrote in Part 1. The only difference is
that when you come to a method call you should use the current data flow
information for the methods that might be called from that call site. Thus,
your algorithm will be able to track RuntimeExceptions that are thrown
across functions, even if they are not listed in Java’s throws clauses.

Hints:

• Make a subclass of your Part 1 solution that differs only in what it
does at method call sites.

• One thing is different about the method “flow functions” in this inter-
procedural analysis, versus intra-procedural analyses we have looked
at in class. The difference is that different inputs (exceptions thrown
by different called methods) are treated differently depending on where
the call is. For example, if you have calls to one method inside a
try/catch block, and another one outside, you don’t want to treat
them the same way. Thus, you don’t want to join the analysis in-
formation from called methods together and store that as the “input”
for the method.

• While you can implement the worklist algorithm given in class given
the right amount of care, because of the reason above (inputs are not
all treated the same) it’s cleaner to modify the worklist algorithm to
store output values instead of input values. The idea is expressed
in the psuedo-code below (which makes another minor modification,
storing nodes instead of edges on the worklist):

4



worklist = new Stack();

∀` ∈ labels(S∗) do

Analysis[`] = ⊥
worklist.push(`)

∀` ∈ E do

Analysis[`] = i

while(!worklist.isEmpty()) do

` = worklist.pop();
if(f`(Analysis) 6v Analysis[`]) then

Analysis[`] = Analysis[`] t f`(Analysis)
worklist.pushAll({`′ | (`, `′) ∈ F})

5


