
17-654/ 17-754 Homework #1

Out Jan. 18

Due Jan. 24, 11:59PM

Problem #1
Consider the following program:

[b := 0]1
[e := false]2
while [a > 0]3 do
 if [(a & 1) = 0]4 then
 [b := b + 1]5
 else
 [e := true]6

[a := a / 2]7
[e := false]8
[b := b * 2]9

if [a < 0]10 then
 [b := -1]11
else
 [skip]12
[skip]13

(5 points) Draw a flow-graph for this program. Clearly identify which instructions
belong in which nodes.

(0 points) Just for grins (not for credit): What does this program do? Assume that
“&” is bitwise-and.

Problem #2
Sign analysis attempts to determine whether the value is positive, negative or zero.
The results of this analysis have a variety of uses in optimizing compilers. Although
its operation is broadly similar to that of Reaching Definitions, there are a few key
differences:

1. Instead of propagating the positions of assignments, we instead propagate
tuples of (var, value-set) where the value-sets are drawn from{false, true, -, 0,
+}1, and we use ? as the unknown value. Note that ? is really an abbreviation for
the set {false, true, -, 0, +}.

2. We don’t care which assignment a value comes from.

1 Note that this definition combines Integer Sign analysis with Boolean constant
propagation. This is not a necessary property for sign analysis, but makes the
problem a little more interesting.

3. For the purpose of this problem, we will ignore the possibility of integer
overflow.

Sign Analysis applied to the program from problem one yields:

Before results

After results

For problem #2:

1. (10 points) Consider the analysis results for label 7 in the example program
above. Give a different possible analysis result for label 7 (both before and
after) that are:

a) precise but unsafe
b) safe but imprecise

2. (30 points) Come up with transfer functions for the analysis. State the
function in terms of gen and kill sets. Note that you must consider
arithmetic expressions and Boolean expressions as well as statements. Give
transfer functions for each statement, plus the Boolean-valued relational
operators on Integers (<, <=, and = will do fine, no need to do them all) and
integer * and -.

3. (20 points) Simulate analysis on the program from Problem 1 using chaotic
iteration until the values reach a fixed point. Use the format from lecture to
show your work

4. (25 points) Prove that your transfer functions for assignment and <= are
monotone.

before stmt

a b e

1 ? ? ?
2 ? {0} ?
3 ? {0,+} {false}
4 {+} {0,+} {false}
5 {+} {0,+} {false}
6 {+} {0,+} {false}
7 {+} {0,+} {false, true}
8 {0,+} {0,+} {false, true}
9 {0,+} {0,+} {false}
10 {-,0} {0,+} {false}
11 {-} {0,+} {false}
12 {0} {0,+} {false}
13 {-,0} {-,0,+} {false}

after stmt # a b e
1 ? {0} ?
2 ? {0} false

3(true) {+} {0,+} {false}
3(false) {-,0} {0,+} {false}
4(true) {+} {0,+} {false}
4(false) {+} {0,+} {false}

5 {+} {+} {false}
6 {+} {0,+} true
7 {0,+} {0,+} {false,

true}
8 {0,+} {0,+} false
9 {0,+} {0,+} false

10(true) {-} {0,+} {false}
10(false) {0} {0,+} {false}

11 {-} {-} {false}
12 {0} {0,+} {false}
13 {-,0} {-,0,+} {false}

5. (5 points) Write simple example code where your analysis yields an
approximate (imprecise) result. By this we mean a result for which a human
can easily see the correct answer, but for which the analysis yields a less
precise answer.

6. (5 points) Explain briefly why your analysis will always be approximate, no
matter how “smart” you make it

