
Tool Evaluation of Rational PurifyTM

Gang, Zhao and Xin (Luna), Dong

1. Introduction
Memory access errors and memory leaks are some of the most difficult problems

for programmers to solve. The bugs often only exhibit symptoms intermittently, making
it very difficult to recreate and debug. No appropriate error messages are given for this
kind of errors, thus programmers are just left confused by the bizarre results and may
even not relate them to memory errors. In addition, the symptoms typically appear far
from the cause of the errors. All of above make memory errors a big headache for
programmers and make debugging them quite difficult and time-consuming.

Rational Purify is a run-time memory related error detection tool. It can discover
almost all kinds of memory related errors and helps programmers to get to the root of the
runtime problems. Its features and benefits include:

• It can automatically pinpoints hard-to-find illegal memory accesses and memory
leaks in C/C++. Also, it can finds memory management issues in Java, C#, VB
and .NET code. What’s more, it can check errors in Web Server code including
JSP and Jam Servlets.

• It can check not only users’ source codes, but also libraries and even components,
no matter whether there are source codes for them.

• It is available both for Windows and for UNIX. It is integrated with Microsoft
Visual Studio 6.0 and Visual Studio .NET. It can quickly analyze executables,
without any rebuilding.

• It permits programmers to control the error checking level for each code module.
In this report, we try to evaluate Purify in three aspects: functionality, performance

and interface. In section 2 and 3, we focus on how effective Purify is in detecting
memory related errors in C/C++ programs at runtime and in debugging garbage-
collection related problems in Java. In section 4, we examine the overhead caused by
Purify in execution time and memory consumption. In section 5, we briefly discuss its
user interface. Finally, we talk about its role in software developing and draw the
conclusion.

2. Purify for C++
C++ is well known for its high flexibility in memory control. On one hand, it brings

convenience and strong power. On the other hand, it enhances the possibility for potential
memory errors. Purify makes it much easier to find and fix these errors. It tries to find out
all kinds of memory misuses and pinpoint the precise location. In this section, we firstly
use a large amount of simple C++ programs to check what kind of errors Purify can
detect and what it cannot. Then we test whether it also works well for MFC applications
using a realistic MFC project.

2.1 How Purify finds memory-access errors
Before checking the capability of Purify to detect memory-access errors, we firstly

have a look at the mechanism it uses in finding errors[5]. This can help us well
understand or at least have a reasonable guess why Purify can or cannot do a certain kind
of things.

Before execution, Purify copies the program and each library the program calls, and
instruments the copies using Object Code Insertion (OCI) technology. The
instrumentation process inserts instructions before each memory operation, including
read, write, memory allocation and deallocation. The instrumented copies of each module
are stored in the Purify cache directory. When rerunning a program, Purify saves time
and resources by using the cached modules, re-instrumenting only the ones that have
changed since the previous run. After the preparation, Purify starts the instrumented
program and begins validating all the memory access.

During the execution, Purify maintains a table to track the status of each memory
byte used by the program. For each byte, two bits are used to record whether it has been
allocated and whether it has been initialized. The combination of the 2 bits identifies 4
states of memory, called red, yellow, green and blue in Purify. The state diagram and
description table are shown respectively in Figure 1 and Table 1.

Purify checks each memory operation against the color state of the memory block to
determine whether the operation is valid. If not, an error will be reported.

Figure 1 Memory states in Purify

Table 1 Memory states in Purify

State Allo-
cated

Initia-
lized

Description Illegal Operation

Red N N

1. Initial heap & stack memory
2. Guard zones around each allocated

block and static data item
3. Freed uninitialized memory

Read, write and
free

Yellow Y N
1. Stack frames on function entry
2. Memory returned by new and malloc

Read and
Unmatched free

Green Y Y
1. Allocated and written memory
2. data and bss sections of memory

Unmatched free

Blue N Y 1. Freed initialized memory
Read, write and

free

2.2 Purify for simple C/C++ programs
There are 5 categories of memory access errors in simple C/C++ programs. [1]

2.2.1 Array Bounds Checking Errors
Arrays can be allocated statically or dynamically. The former happens in the stack

and the latter in the heap.

• Dynamic Array Bounds Checking
Both global and local dynamic array misuses can be successfully reported. Purify can

detect the errors; report them as ABR/ABW messages; pinpoint precise error locations
and allocation locations; and also give out how far the accessed memory is beyond or
past the bounds. If the error happens in a function, both the place in the function and the
invoking lines in the callers are pointed out. This is done by inserting red zones around
allocated memory.

Since Purify keeps track of memory at the byte level, it can also detect errors if an int
or long (4 bytes) is accessed from a location previously allocated as a short. These are
also reported as array bounds read or write errors, as they are similar in essence.

Sometimes writing an array over bounds is not detected immediately and is reported
later as an ABWL (late detect array bounds write). One example is that users input a
longer string than the program has expected and allocated. This can not be detected until
later use of the memory. Instead of reporting the exact place where the error occurs,
Purify only gives out where the error is detected. Mechanism of stream operations is
needed to be known to find out why Purify is confused here and cannot response timely.

• Statistic Array Bounds Checking

Static arrays are allocated in stack on function entrance. Like dynamic arrays, illegal
static array accesses can lead to crucial mistakes. But Purify cannot detect them. The
reason may lie in the guarding zone insertion around static arrays.

2.2.2 Memory Usage Errors
Besides array accessing errors, memory usage errors also include uninitialized

memory read and copy errors, free memory read and write errors, and free mismatch
errors.

• Uninitialized Memory Use
When the memory has only been allocated but not initialized, it is in yellow zone and

cannot be read. Purify distinguishes between copies of uninitialized data, such as
structure padding, and uses of uninitialized data in calculations. The former is reported as
a UMC while the latter as a UMR. Again, the locations for both error and allocation are
reported.

Here are three problems related to uninitialized memory use in Purify. The first is
similar to static array bound checking. If a statically declared memory is not initialized,
reading or copying it will not incur any errors reported by Purify. However, if the pointer
for this memory is transmitted as a parameter of a function, any use of the pointer in the
function will leads to an error. The problem is also related to how Purify color the
memory in stack.

The other two problems are about the way Purify reports errors, thus just minor. One
is that if an initialized memory is padded to an intermediate memory, and that memory is
copied to another area of memory, UMC errors are reported twice instead of once. It is
reasonable but redundant and may be confusing to users. It depends on how Purify
handles with the copied memory. Specifically, whether it colors it green or the same color
as the source memory.

Finally, sometimes Purify might attribute a UMR to the closing brace of a function.
This is probably because one or more execution paths did not assign a return value for the
function or because the value comes from an uninitialized location on the stack. As a
result, users have to check all possible return locations.

• Free Memory Use
Free memory errors often happen when the program attempts to read, write or free a
dangling pointer. The pointer points to a part of memory which has already been freed.
So it is a blue zone error.

When such memories are read or written, FMR/FMW errors are reported. When they are
freed, FFM errors are reported. Along with the error message, the precise places where
the memory is allocated, freed, and attempted to access again are pointed out.

As freed memory can be allocated for other use and colored yellow or green again, Purify
maintains a deferred free queue to record the ever freed memories so as to detect such
kind of errors. Large queue length and threshold increases the chances of catching
dangling pointer accesses long after the block has been freed and catching dangling
pointer accesses to huge blocks of memory. This provides better error detection but at the
same time takes up more memory at run time.

• Free Mismatch Errors
Free mismatch errors indicates that the program allocates memory from one family of

APIs and then deallocates it from a mismatched family. For example, a memory allocated
by new cannot be freed by free. Also, a memory allocated using one heap cannot be
deallocated using another. These errors can occur both in yellow zone and in green zone.

When they happen, both the error message FMM and the codes of allocation and
deallocation are reported by Purify.

However, there is another kind of mismatch. It happens when an array is allocated but
delete is used to free it, or when a single memory is allocated but delete[] is used in
deallocation. Unfortunately, purify doesn’t take it into consideration.

2.2.3 Pointer Errors
Invalid or null pointers cannot be used in reading, writing or freeing. These

operations can be so dangerous that sometimes the operation system itself breaks the
program and gives out error messages.

• Null Pointer Use
When a pointer is assigned to NULL but read or written later, the system will stop the

program and Purify will reports NPR/NPW with the error location. However, if the
pointer is freed later, neither of them gives any responses.

• Invalid Pointer Read/Write
Invalid pointers include pointers pointing to memory on the stack, program codes and

data sections, and also low 64k memory.

For system memory, none of the operations should be permitted. They cause IPR,
IPW and FIM errors. Like the way to handle with NULL pointers, both the system and
Purify protect from any violations of this area.

For memory on the stack and program data, it can be read and written but should not
be deleted, which accounts for a FIM error. However, if several attempt of deleting occur
in a line, sometimes Purify only reports the first one.

2.2.4 Other Stack Related Errors
Stack memories are allocated when entering a function and reallocated when leaving.

Correspondingly, there are two kinds of memory errors related to stacks. One happens
when not enough memories can be allocated on entering. Another happens when the
reallocated memories are used again after leaving.

• Stack Overflow
Stack overflow usually happens in recursive functions if the termination condition

cannot be satisfied and the program has no way to jump out. When the system is short of
memory, it breaks current program and throws out an exception. Purify cannot detect it
earlier but just report the exception again and again.

• Stack Out of Bounds Read and Write Errors
After leaving a function, the memories allocated for this function are colored blue and

cannot be used any more. Or else it will produce a BSR or a BSW error. Purify reports
the error locations but cannot report how far beyond the stack it is.

2.2.5 Memory Allocation Failure and Memory Leak

Another type of memory problem is memory shortage. The reason can be huge
memory requirement or memory release failure.

• Memory Allocation Failure

If a huge block of memory is required at one time, the allocation cannot be satisfied
and the system will throw out an exception. Purify can distinguish this exception from
others, and gives out a MAF message as well as the location.

Another possibility is that the program keeps asking for small blocks of memory, and at
last makes the system run short of memory. In this case, Purify makes things worse.
Before the program eats up the memory, Purify runs out of virtual memory and has to be
paused manually. What’s more terrible, if the program is run under debugging mode in
Visual Studio, things turn out that in the end the project cannot be closed without using
Task Manager.

• Memory Leak
Memory leak can leads to shortage of swap space and finally slowing down and

crashes. Besides its jeopardy, it is infamous for the difficulty to be detected. One of
Purify’s biggest contributions is that it can locate memory leaks precisely. During process
shutdown, Purify scans heaps for leaked memory indicated by yellow zones and green
zones before calls to HeapDestroy. As memories in stacks are released automatically,
they will not lead to memory leak and are not needed to be examined. If some memories
are allocated but not freed, the MLK information will be presented with the allocation
places. Furthermore, if for some blocks, Purify cannot find any pointers to its start, but
there appear to be pointers pointing somewhere within the block, then a MPK message
will be used to indicate a potential memory leak

Again, some problems with memory leak exists in Purify. One is that if there is no
return at the end of the main function, some of the leaks will not be detected. Another
is, if exit(), ExitProcess(), or TerminateProcess() is called, and these variables contain
pointers to blocks of allocated memory, the memory is considered still in use and is not
reported as a leak. However, if instead the program return from main() and all local
variables go out of scope, additional memory leaks might be reported.

2.3 Purify for MFC programs
Nowadays a lot of software written in C++ is essentially extensions for the Microsoft

Foundation Class(MFC) library. The main differences between this branch of C++
programs and simple C/C++ programs include that the projects are larger, the invocation
relationship is more complex, and more Windows API and handles are used. To test
whether Purify works well for these programs, we use a middle-sized project that
interactively draws B-Deboor curves as a test case.

Before testing, the project had already been compiled and could draw B-Deboor
curves as expected. After running Purify, one array bounds error and five memory leaks
were detected. Besides, a bad parameter error was reported. The Purify reporting window
is shown in Figure2. With the help of Purify, it’s not difficult to find the array bounds
error and two of the memory leaks. While fixing the memory leak errors, some new
problems were introduced intentionally or accidentally. Every time Purify gave us a
helpful and timely response. Finally these mistakes were fixed, while the bad parameter
error and three other memory leaks were left. At the end of the test, one handle mistake
and one reserved memory misuse were led into the program. Purify detected the mistakes
and reported them.

Figure 2 Purify Report for BDeboor Project

The whole process shows some basic characteristics of Purify in detecting and
reporting memory related errors in MFC programs.

• Firstly, the error location reports for MFC programs include much more functions
to record the invocation trace. Usually the inner functions are API core functions
that handle with memories; the outer functions are also API core functions that
handle with events; and only a couple of the functions in the middle are defined in
our own programs. Purify can detect API functions even when the source codes
are not available.

• In some cases, Purify cannot point out errors directly and accurately due to the
complexity of the program. Although it still gives a lot of clues for locating those
mistakes, programmer’s good knowledge of the class structure is crucial.

• Some memory errors are reported for almost all MFC programs, even the simplest
ones produced automatically by MFC wizard. One of them is the bad parameter
use error, which says both Debug and non-Debug versions of CRT are active. The
others are 3 memory leaks, including 44 bytes allocated in ImmGetIMCCSize,
348 bytes in ImmGetVirtualKey, and 280 bytes allocated in ImmCreateIMCC.

• When some reserved pointers, such as the document pointer got by
GetDocument(), are deleted, under debug mode the program will be broken by
the system and Purify will report a null pointer read error. However, the location
given for this error is the first use after the pointer is deleted and usually far away

from the deletion. Users may be confused by it and it can be difficult to find the
error. However, if running it under release mode, the program can run well and no
errors are reported by Purify.

• Purify also reports handles in use after execution. For some handles that are not
released on exit, they can lead to some resources leaks. As a simple test, we
included a call to GetDC() without a matching call to ReleaseDC(). Purify
generates a list of unreleased handles on exit, including this one and also a
number of others that are not resource leaks. Thus it’s the programmer’s job to
distinguish them and remove the leaks.

3. Purify for Java
Besides detecting explicit memory problems in C/C++ programs, Purify can also find

out potential memory leaks in Java. By sacrificing some flexibility, Java eliminates many
memory errors in C++. However, memory problems still exist in Java. In this section we
first describe these problems, and then use an example to illustrate how Purify can help in
detecting these problems. Finally, we show a by-product in which Purify is used as a tool
to study memory allocation strategy in Java.

3.1 Memory problem in Java
Thanks to Java’s great design, the common illegal memory accesses in C++ cannot

disturb Java programs at all. Firstly, Java prohibits the use of pointers. This protects the
system from unintentional damage caused by pointers, and also semantically eliminates
all errors related to pointers. Secondly, Java Virtual Machine (JVM) performs much more
strict checks in run time. It can detect almost all kinds of illegal memory accesses and
throw out run time exceptions. Furthermore, JVM uses garbage collection to collect
unused memory periodically and automatically. In this way, the traditional memory leaks
are completely prevented. Table 2 lists the memory errors and presents how they are
resolved naturally in Java.

Table 2 Memory Errors and Resolutions in Java

Error Types Solved in Java by
BSR, BSW
FMR, FMW

IPR, IPW

In Java there are only references but no pointers. So these problems
cannot happen.

UMC, UMR
Java does not process memory directly. Any object will be initialized
using its constructor at creation. So these problems cannot happen in
Java.

ABW, ABR
IndexOutOfBoundsException: Thrown to indicate that an index of
some sort (such as an array, a string, or a vector) is out of range.

NPR, NPW
NullPointerException: Thrown when an application attempts to use null
in a case where an object is required.

MLK
The garbage collector. The memory blocks with no references will be
cleaned by the garbage collector in the future.

MIU This is the real memory leak in java application.

However, there are still inefficient memory uses in Java. They can greatly damage
performance and even cause program to crash. A common problem is that the memory
consumed by an application increases stably over time. This can be a result from [3]:

• Adding objects to collections or arrays but forgetting them after that.

• Resetting the reference to another object. If the routine in which the reference is
reset is not called, the object stays in memory and will not be garbage collected.

• Changing the state of an object when there is still a reference to the old state.

• Having a reference that is pinned by a long running thread. Even the object
reference is set to NULL, it cannot be garbage collected until the thread
terminates.

• Using system resources that are not freed automatically. For example, Abstract
Windowing Toolkit (AWT) for Sun Java will not be cleaned by the Garbage
Collector and needs to be freed manually by using the method dispose().

Thus, memory leak in Java is defined differently from that in C++. In Java, memory
leak is the memory garbage occupied by the objects that would not be referred any more
according to program’s logic, but fail to get rid of all references to them. To remove this
kind of leaks, we must distinguish unintentional memory waste from intentional memory
use. This is very difficult in large application. Fortunately, Purify can make it easier.

3.2 Using Purify for Java “memory leak”
Purify also uses the technique of instrumentation to profile the memory usage of a

given Java application. With the profiling data, Purify can tell which methods and objects
monopolize large chunks of memory that the garbage collector cannot free.

To evaluate the effectiveness of Purify, we designed a sample with intentional
memory leaks inside. In a thread class, we introduced a bug that causes stable increased
memory use. Normally, the bug is out of the execution path, thus the thread object works
well. However, it can be triggered by a signal. Our application produces 10 threads of this
kind, and only one of them is chosen randomly as the victim of the bug. As a result,
which particular object is chosen is not known in advance

To use Purify in profiling Java memory usage, the basic steps are:

• Run Java application with Purify.

• Take a snapshot when memory usage is stable.

• Execute codes that may cause memory leak and then take another snapshot.

• Compare the two snapshots and identify the methods that may give rise to
memory problems.

• Pinpoint the objects and the references that prevent the objects from being
garbage collected.

Figure 3 is the screen copy when Purify is doing profiling. The application shows
that the abnormal thread is thread 5. Figure 4 shows that by differentiating the two
snapshots, Purify also succeeds in finding out where the problem is. The thickest line
denotes the object responsible for the memory leak. In function detail view (Figure 5) we

can find that thread 5 allocates 90K memory while others only 2k, which confirms our
suspicion. Additionally, Purify can locate the source code and help programmers fix the
problem. (Figure 6)

 Figure 3 Memory profiling with Purify

Figure 4 The thickest line indicates potential memory leak

Figure 6 Memory usage of each thread object

3.3 Using purify to study memory allocation strategy in Java
A by-product of Purify evaluation is that the memory diagram profiled by Purify

reveals the adaptive memory allocation strategy in Java.

When starting an application, JVM allocates a certain size of memory as visible
memory to the application, which is larger than the current requirement to a certain
percentage. When more memory is needed, JVM first tries to allocate memory from
current visible block. If the required amount is larger than the current visible block, JVM
supplements more memory. The increment is not constant but also keeps increasing.

We are interested in the amount of each increment that JVM allocates to satisfy the
memory requirement. In our experiment, we varied the size of allocation requirements
from 512 Bytes to 1 Million Bytes. Figure 3-7 shows the total memory size of the visible
block each time. Figure 3-8 shows the increment size. The figures show an interesting
result: even though the memory requirements vary greatly, JVM increases the visible
total memory in the same pattern. Beginning at about 1MB, the increment doubles each
time.

With Purify’s memory profiling function, we can get the data of memory usage
directly from the memory view. Even though using runtime API could also reveal the
memory usage, but Purify bring us a visual impression to the background problem with
its diagram of memory profiling.

Figure 5 Come back to source code

Memory Increment Each Time

0

5000000

10000000

15000000

20000000

25000000

1 2 3 4 5 6

Size (Byte)

512Byte

1K

2K

4K

8K

16K

32K

64K

128K

256K

512K

1M

Average

Memory Allocation in Java

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
em

o
ry

 S
iz

e
(B

yt
e)

512Byte

1K

2K

4K

8K

16K

32K

64K

128K

256K

512K

1M

4. The Performance of Purify
When looking for errors in programs, performance is a secondary issue to features,

however, it is still an issue. The performance hit when running with Purify is significant.
[4] As Purify runs its own private instrumented versions of the application and maintains
a memory state table, both the running time is prolonged and the system memory is
grabbed as well.

Figure 8 Total memory allocated to sample application

Figure 7 Memory increment each time

In this section, we observe the overhead by examining execution time and memory
consumption. Our test cases vary in run length, error types and error numbers. Originated
program performance is compared with that under Purify monitoring.

Firstly, we choose a C++ program that does matrix multiplication. There are two
versions of the program: one uses static array; the other uses dynamic array, in which
there are much more memory uses. Both of the versions are run in different matrix sizes
of 10, 50, and 300. Table 3 shows the time spent on executing these programs with Purify
and without Purify. Figure 9 shows the comparison. From them we can see, although they
are just simple programs, a large amount of overhead is introduces. More overhead is
introduced to programs using dynamic memory than those using static memory. In
addition, it’s easy to understand that as the matrix size goes up, the overhead decreases.

Table 3 The overhead of Purify in C++ program

Execution time
without Purify

Execution time
with Purify Ratio

30static 188 1766 9.39
100static 2891 21610 7.47
250static 16891 75125 4.45

30dyn 47 1864 39.7
100dyn 1688 21489 12.73
250dyn 20546 143374 6.98

9.39
7.47

4.45

39.7

12.73

6.98

0

5

10

15

20

25

30

35

40

Times

1

Purify overhead (C++) scaling with different program size

30static 100static 250static 30dyn 100dyn 250dyn

Figure 9 The overhead of Purify in C++ program

Secondly, we make ten copies of the mid-sized matrix multiplication program using
dynamic arrays. In each of the first four copies, we lead into one standard error types:
read out of bounds error, read uninitialized memory error, read freed memory error and
memory leak. In another four copies, the same errors are brought in but occurred much

more times. In the rest two copies, each has two kinds of errors. Table 4 gives out the
execution time and Figure 10 shows the time ratios of the original correct program and
the wrong programs. The ratio varies in a wide range from error type to error type.
Usually, more memory errors need more detection time. However, although the running
time under Purify is often more for error programs than correct programs, that without
Purify’s detection is not. So no error doesn’t mean lower overhead.

Table 4 The overhead of Purify with different amount of errors

Execution time
without Purify

Execution time
with Purify Ratio

Original 1688 21489 12.73
ABR less 2047 22032 10.76
ABR more 2891 23125 8
MFRless 63 22015 349.44

MFR more 63 22585 358.49
NUL less 2906 22656 7.8
NUL more 4328 35890 8.29
LEAK less 2859 22078 7.72
LEAK more 1672 21828 13.05
ABR+LEAK 2907 23156 7.96
NUL+LEAK 4312 37093 8.60

12.73

7.62

11.56

13.1
13.4

7.8

8.29

7.72

13.1

7.97 8.6

0

2

4

6

8

10

12

14

Times

1

Purify overhead (C++) scaling with different error amount

No error ABRless ABRmore MFRless

MFRmore NULless NULmore LEAKless

LEAKmore ABR+LEAK NUL+LEAK

Figure 10 Purify overhead (C++) scaling with different error amount

In addition, we use a small benchmark from CS department of University of
Wisconsin to quantify the performance degradation of application under the profiling of
Purify for Java. From the benchmark we selected 5 programs of different code size and

run time. The performance is measured in two aspects: execution time and memory
consumption.

As shown in Figure 11, Queens, Quick Sort and Automata are some kind of memory
intensive, which contains frequent memory accesses and a lot of objects at the same time.
For these applications, the overhead brought by Purify is about 300 times of the
execution time. MatMult and Linpack could be considered as computation intensive, in
which the memory accesses are less frequent and the number of objects is moderate. The
overhead introduced by Purify is about 100 times. Again, this result is reasonable
considering that purify monitors memory accesses.

300

120

115

322

257

0 50 100 150 200 250 300 350

Times

Automata

Linpack

MatMult

Quick Sort

Queens

Overhead imported by purity

50

30

30

70

15

0 10 20 30 40 50 60 70

Time (ms)

1

BenchMark Execution Time without Purify

14981

3585

3475

22541

3860

0 5000 10000 15000 20000 25000

Time (ms)

1

BenchMark Execution Time under Purify

Figure 11 Overhead in term of execution time

From Figure 12 we can see that in average the profiling consumes 150% more
memory than original execution. This limits the largest size of the applications that Purify
can profile. Actually, when profiling large applications, Purify often gets crashed,
although it is just the large programs that are more likely to contain potential memory
problems.

5. The User Interface of Purify
Purify is integrated into Microsoft Visual Studio 6.0 and Visual Studio .NET.

Besides, it can be used as a standing alone Windows application or in command lines.
The high consistence with Windows program style makes it easy to learn and easy to use.

Purify presents memory errors and usages in a more visual way. For C/C++
programs, it organizes the information in a tree structure. Different symbols and colors
are used for different information types. What’s more, it can bring the programmers back
to the source code where the error occurs when clicking the corresponding error
information. For Java programs, it generates memory profiling information, which
contains 4 views: memory, call graph, function list view, and object list view. The
graphical charts are expressing and clear.

Besides, Purify is easy to control. Programmers can adjust the level of checking on a
module-by-module basis. They can design filters in details and also choose whether to
stop the execution when errors are detected.

Finally, the command line of Purify enables it to be invoked in a test script. So we
can integrate Purify with those test tools to launch a bunch of profiling or detecting
commands one time in batch mode. Purify has a complete set of optional parameters in

864600

285144

1149552

487680

914256

292544

1074896

453184

1003384

413520

0

200000

400000

600000

800000

1000000

1200000

Memory in Use
(Bytes)

Automata Linpack MatMult Quick Sort Queens

Memory consumption comparison

Memory use under purify

Memory use w ithout purify

 Figure 12 Memory consumption in each case

command line version to enable all functions of it could be accessed through command
line.

6. Conclusion

Rational Purify helps to locate and eliminate those memory-related errors which can
be fatal or corrupting. It is helpful to enhance both the functionality and the stability of
the software. Rather than waiting until the final release, it should be used early and often
throughout the development process.

Although Purify is powerful and convenient, it cannot substitute for the developer’s
expertise. In debugging using Purify, at least three things are needed to be done by the
programmers themselves.

1. To design different execution streams to cover all of the routines in the program.
Purify validates memory accesses in run time. In other words, this is done
dynamically and errors can still be left in the codes that are not executed.

2. To tell real memory leaks and resource leaks from those that are needed to be in
use on exit. Purify is still not smart enough and often mix them together.

3. To track down the error locations with the help of Purify. Sometimes Purify
cannot point out error locations accurately. A good knowledge of the class
structure can be very helpful in doing this.

In the evaluation, we are impressed by the strong power of Purify. However, we have
to admit Purify is not perfect. While it can play an important role in software
development, it still has large room to be improved.

1. The biggest and most annoying problem about Purify is its stability. When
instrumenting C++ files, it makes the whole system crash from time to time. This
can happen either on large projects or on small projects, either after it has run for
a long time or immediately after it is started, either when the project is compiled
for the first time or when it has already been compiled for several time. We also
tried to avoid the crash by deleting all the files in the cache folder whenever
running Purify, it seems to be helpful but crash still happens some time.

2. Another problem is its scalability. As it eats up huge amount of memories, it
cannot successfully detect large applications. When we tested Java programs, it
crashed from time to time when the application was large. Fortunately, this time it
was itself but not the whole system that went down.

3. The use of cache folder is also a problem for Purify. Although it brings higher
performance and saves time and resources, it occupies more and more places in
hard disks. When the project is ended, the instrumented files are still left in the
hard disk and so need to be deleted manually.

4. While Purify succeeds in detecting dynamically allocated memory misuses in
C/C++, it cannot handle with static memory well. Array bound accesses and
uninitialized memory access in stack can neither be detected.

5. Finally, in Java memory profiles, when the memory leaks are small, it’s not
detectable from the report views. Although these leaks are minor and is not a big
threat to the system, it can become a problem after long-time run.

Reference
1.Rational Software Development Company, Rational Purify for Windows

“http://www.rational.com/products/purify_nt/index.jsp”.
2.National software Testing Laboratories, Performance Testing of Rational Software’s

software product Purify ,“http://www.rational.com/media/whitepapers/pnt-nstl.pdf”
3.Goran Begic, Memory profiling in Java, Rational Software white papers.
4.Goran Begic, Run-Time Debugging with Microsoft Visual Studio and Rational Purify
5.Rational software white papers

