
1

jlint

Group 5:
David Bangerter
Matt Laroche
Melissa Ludowise
Ben McCann

Overview

� Two parts:
� antic – checks syntax

� jlint – checks semantics

� Binaries available for Windows,
source provided
� Didn’t compile initially on OS X

� It’s not a commercial product

2

Scope

� antic can be run on C, C++, Objective C,
and Java
� Suspicious use of operator priorities

• x && y & z

� No break in switch code
• switch (action) {

case op_remove: do_remove();
case op_insert: do_insert();
case op_edit: do_edit();

}

� Lower case l at the end of a long constant
• long l = 0x111111l;

� And more things that make code hard to read but
aren’t language violations

Scope cont.

� jlint is run on Java only
� Bounds checking
� Deadlock detection
� Race conditions

• (Variables not declared volatile when accessed by
multiple threads)

� Catches redundant and suspicious
calculations

• public boolean foo(int x, int y) {
return ((x & 1) == y*2);
// will be true only for x=y=0

}

3

Running

� $ antic –java “path to
source dir”
� Can also do antic –java *.java

� $ jlint “path to source dir”
� Can also do jlint +verbose *.class

Errors Caught

� antic caught no errors in our code
base

� jlint caught one error:
� if(currentLine == null || currentLine == "")

� Should have been:
if(currentLine == null || currentLine.equals(“”))

4

Errors Caught Cont.

� jlint also caught two errors in the java.lang
package when run on our code
� java\lang\Double.java:1: hashCode() was

overridden but not equals()

� java\lang\Integer.java:1: hashCode()
was overridden but not equals()

� These probably should have been
suppressed, as it is very unlikely that either
of these classes have errors with their
equals() or hashCode() methods

Benefits

� Very fast
� Low learning curve
� Do not have to do any configuration
� Do not have to tell it anything about your

code
� Don’t even need the source code

• But error messages are more descriptive with it

� Will help you write better code
� if (x == y & 1) – there should probably

be another set of parentheses for clarity

5

Drawbacks

� Does not cover a lot
� Only caught one error in our code

� For synchronization it may produce
too many warnings to be useful
� They actually recommend disabling

much of the synchronization warnings!

Side notes

� There’s lint like tools for other languages
� splint for C
� PC-Lint for C/C++
� Matlab

� Ran the tool on some Sun code
� They don’t mark some shared variables as

volatile

� Ran the tool on a Hibernate class file
� They don’t check for null sometimes

6

Conclusion

� jlint’s fairly helpful
� It does not catch many bugs, but will

still save you time especially given the
low overhead in learning and using it
as a tool

� It would be nice to have integrated
into Eclipse so it’s run on the fly and
not later

