Final Exam Review (extended)

15-413: Introduction to Software Engineering

Jonathan Aldrich

Hoare Logic g

{N>0,M>0}
p=1
i:=N
while (i > 0)
p:=p*M;
i=i-1;
{p=M"}
e Loop invariant?
e p=MA(N-i) && i >=0
* Variant function?

* Loop verification condition?
e INV &&i>0 =>
o p*M=MA(N-(i-1)) && (i-1) >= 0
o p*M = MAN-i+1) &&i>0
p=MAN-) &&i>0

8 December 2005

Translation of Temporal Logic g

* p="“pholds inthe current state”

* Af="for all paths from the current state” f

* Ef="there exists some path from the current state such that” f
e X f="inthe next state on the path” f

* G f="inall states along the path” f

e fU g="along the path there will eventually be a state where” g
“and for every state before that” f

 F g=true U g = “along the path there will eventually be a state
where” g

 Examples
* AG p = “for all paths from the current state, in all states along the
path, p holds”
* EF p =“there exists a path from the current state such that along
the path there will eventually be a state where p holds”

8 December 2005

Temporal Logic

B

* Translate these statements into temporal log
* No matter what happens, the dike will never
overflow at any time
* AG ~overflow
* No matter how | use my computer, at any point,
there is always something | can do that will

eventually shut down
* AG EF shutdown

ic

* No matter how | use my computer, at any point, if |

press the reset button then the computer will

restart immediately afterwards
* AG (reset => AX restart)

8 December 2005

Behavioral: Visitor

* Applicability

 Structure with many classes

Want to perform operations
that depend on classes
Set of classes is stable
Want to define new
operations

* Consequences

Easy to add new operations
Groups related behavior in
Visitor

Adding new elements is
hard

Visitor can store state
Elements must expose
interface

Hoso
S T P Fe VT F P T R e

alereaoaes
Yigilor

A

ETTTEReT
Conerste Yialtor

A4 c el eFoen e e Tunr 4 <Flerenl)

Object Strueture

s vrily ke
Mement
[nlerfacs |
EETE T

T —

‘:::'cLﬂ: o

Loncrete Element

=B e v kX,
Sperucich]

apcepts viskor |
= MEilCenrekete E omekibial,
i

|

8 December 2005

Behavioral: Observer
* Applicability _ .
* When an abstraction has two Caben vserver
aspects, one dependentonthe |, .. 555l CLLLL

other, and you want to reuse
each

When change to one object
requires changing others, and
you don’'t know how many
objects need to be changed
When an object should be able
to notify others without knowing
who they are

* Consequences

Loose coupling between subject
and observer, enhancing reuse
Support for broadcast
communication

Notification can lead to further
updates, causing a cascade
effect

[elgc hj o xzeruet: DLz erver) el d
Folitsf 1

Mol
[LIETEY R TERER TS
.o upeokell;

=

ERET T
ConcreteEu el

—SUb[ect3tare: Sale
—el Sk =42
—zal5latalzta s Hlzte| v

&

eborcolyp e

L oncral etk hs Brver

ETEER

ENEES

i

8 December 2005

Behavioral: Template Method

* Applicability

¢ When an algorithm consists of
varying and invariant parts that
must be customized

« When common behavior in
subclasses should be factored
and localized to avoid code
duplication

¢ To control subclass extensions
to specific operations

* Consequences
* Code reuse
 Inverted “Hollywood” control:
don't call us, we'll call you
¢ Ensures the invariant parts of

the algorithm are not changed by

subclasses

e pes
AbatractClasa
| cbalrct |

—Templasdzacd -

2
#ErnitieOperst on, I{cba}h:d}

ETE T
CencretecClags

#icifieipest an |

Tenpld hd o o di)

P ke peicni:

8 December 2005

Creational: Abstract factory
* Applicability
e System shoulo!c be d
independent of product -
creation \/"'—'1
» Want to configure with PO
multiple families of products 4
° Want to enS_LIre_ that a calere o acy - .:;3|cchZ'RJCX
product family is used Aestntractory Attt
el Pru ol] Ll Froc el el ey

together

» Consequences

* Isolates concrete classes

» Makes it easy to change
product families

» Helps ensure consistent
use of family

» Hard to support new kinds
of products

A

BT Iy IEE
CuncrelFaclor
+restePradel]) - shebaclPoac el

Apzantess
prod azes

&

T

Praduct

8 December 2005

Creational: Factory Method

s zchipen
Mreduct
|obarect |

ke
Croaler
qadsmcl -

anfiperinnl)§
varied = Tacbabd b,

HATEIpERE on |

AR Fr= i

wd vl ke
CancretaPraduct s
<1t hatess

Al
Cancretedreator

[aTonddelo I T Faducl [

* Applicability
* A class can'’t anticipate
the class of objects it
must create
* A class wants its
subclasses to specify the
objects it creates

* Consequences
e Provides hooks for
subclasses to
customize creation
behavior
* Connects parallel
class hierarchies

8 December 2005

Creational: Singleton

* Applicability

¢ There must be exactly one
instance of a class

« When it must be accessible to
clients from a well-known place

¢ When the sole instance should
be extensible by subclassing,
with unmodified clients using the
subclass

* Consequences

¢ Controlled access to sole
instance

¢ Reduced name space (vs. global
variables)

¢ Can berefined in subclass or
changed to allow multiple
instances

* More flexible than class

operations
« Can change later if you need to

wabprc ol p
singleton

-+ HhEfea: S abon — et QS| {hine

ETgleton] |

* Implementation
« Constructor is protected
¢ Instance variable is private
¢ Public operation returns
singleton
« May lazily create singleton
» Subclassing
* Instance() method can look up
subclass to create in
environment

8 December 2005

Structural: Proxy

B

wZERE olypas
Subject

* Applicability
* Whenever you need a more
sophisticated object
reference than a simple
pointer
« Local representative for a
remote object
« Create or load expensive
object on demand

Salslra, ¢
R s | falidra 4}

ws iy

w5 iy ke
RealSubject Froxy

e
Tequeal | Tl b 23 Tequeall |

Hacuzz||{
T o

« Control access to an object ,

« Reference count an object
* Consequences
* Introduces a level of
indirection
« Hides distribution from client
» Hides optimizations from client
* Adds housekeeping tasks

et R aesl;

B

8 December 2005

What is an architecture?

B

A software architecture is the structure or
structures of a system, which comprise
elements, their externally-visible properties,
and the relationships among them

But what kinds of structure?

modules: showing composition/decomposition
runtime: components at runtime

allocation: how software is deployed

Eaéh is the basis of an Architectural View

8 December 2005

Component-and-Connector (C&C) View g

* Decomposition of system into components...
* Components: principal units of run-time

computation and data stores
Examples: client, server

* Typically hierarchical

* And connectors...
» Connectors: define an abstraction of the
interactions between components
Examples: procedure call, pipe, event announce
* Using architectural styles...
» Guide composition of components and
connectors

* And constraints (or invariants)

8 December 2005

What Is Institutionalization? g

sInstitutionalization involves implementing

practices that

* Ensure processes can be communicated about
(they are defined, documented, understood)

* Ensure the processes are effective, repeatable
and lasting

* Provide needed infrastructure support

* Enable organizational learning to improve the
process

8 December 2005

Model Representationsg

Staged ~ =
...for a pre-defined set of process e Continuous

areas across an organization

———_-_-—_-—_— — — — — —— —— —— — —] CL5
Maturity Level 5 Optimizing: Focus on
Process Improvement >
oID, CAR —_—_—— ——_—_—————_——_——_——_—————] a4+ =
) Quantitatively Managed: Process =
Maturlty Level 4 Measured and Controlled _(%
OPP, QPM . ————— —— ———— - — cL3 %
Maturity Level 3 Defined: Process Characterized O
for the Organization and (o]
i (]
RD, TS, PI, VER, VAL, OPF, OPD, OT, Is Proactive bt
IPM, RSKM, DAR, OEl, IT, ISM <
= ———————— cL2 §
) Managed: Process Q
Maturity Level 2 Characterized for Projects ?L% y ©
and Is Often Reactive (initial) E
REQM, PP, PMC, MA, PPQA, CM, SAM
CLO
(Incomplete)
3 PA PA PA
Maturity Level 1 ' z y X
Initial: Process Unpredictable, Poorly Controlled, and Reactive

[Essentially the Same Content but Organized in a Different Way.]

Copyright 2003, CSSA, Inc. Used with permission.

Black-box Testing

» Verify each piece of functionality of the system

Black-box: don’'t look at the code

* Systematic testing

Test each use case

Test combinations of functionality (bold + italic +
font + size)

* Generally have to sample

Test incorrect user input

Test each “equivalence class” (similar input/output)
Test uncommon cases

* Generating all error messages

* Using uncommon functionality

Test borderline cases

» Edges of ranges, overflow inputs, array of size 0 or 1

8 December 2005

B

White-box Testing g

* Look at the code (white-box) and try to systematically
cause it to fail

* Coverage criteria: a way to be systematic
e Function coverage
* Execute each function
» Statement coverage
* Most common
* Edge coverage
* Take both sides of each branch
e Path coverage
* Note: infinite number of paths!
+ Typical compromise: 0-1-many loop iterations
* Condition coverage
* Choose a set of predicates
» Cover each statement with each combination of predicates
» Exercise data structures
» Each conceptual state or sequence of states

* Typically cannot reach 100% coverage
» Especially true of paths, conditions

8 December 2005

