
1

Final Exam Review (extended)

15-413: Introduction to Software Engineering

Jonathan Aldrich

8 December 2005

Hoare Logic
{ N > 0, M > 0 }
p := 1
i := N
while (i > 0)

p := p * M;
i := i - 1;

{ p = MN }
• Loop invariant?

• p=M^(N-i) && i >=0
• Variant function?

• i
• Loop verification condition?

• INV && i>0 =>
• p*M=M^(N-(i-1)) && (i-1) >= 0

• p*M = M^(N-i+1) && i > 0
• p = M^(N-i) && i > 0

2

8 December 2005

Translation of Temporal Logic
• p = “p holds in the current state”
• A f = “for all paths from the current state” f
• E f = “there exists some path from the current state such that” f
• X f = “in the next state on the path” f
• G f = “in all states along the path” f
• f U g = “along the path there will eventually be a state where” g

“and for every state before that” f
• F g = true U g = “along the path there will eventually be a state

where” g

• Examples
• AG p = “for all paths from the current state, in all states along the

path, p holds”
• EF p = “there exists a path from the current state such that along

the path there will eventually be a state where p holds”

8 December 2005

Temporal Logic

• Translate these statements into temporal logic
• No matter what happens, the dike will never

overflow at any time
• AG ~overflow

• No matter how I use my computer, at any point,
there is always something I can do that will
eventually shut down
• AG EF shutdown

• No matter how I use my computer, at any point, if I
press the reset button then the computer will
restart immediately afterwards
• AG (reset => AX restart)

3

8 December 2005

Behavioral: Visitor
• Applicability

• Structure with many classes
• Want to perform operations

that depend on classes
• Set of classes is stable
• Want to define new

operations
• Consequences

• Easy to add new operations
• Groups related behavior in

Visitor
• Adding new elements is

hard
• Visitor can store state
• Elements must expose

interface

8 December 2005

Behavioral: Observer
• Applicability

• When an abstraction has two
aspects, one dependent on the
other, and you want to reuse
each

• When change to one object
requires changing others, and
you don’t know how many
objects need to be changed

• When an object should be able
to notify others without knowing
who they are

• Consequences
• Loose coupling between subject

and observer, enhancing reuse
• Support for broadcast

communication
• Notification can lead to further

updates, causing a cascade
effect

4

8 December 2005

Behavioral: Template Method
• Applicability

• When an algorithm consists of
varying and invariant parts that
must be customized

• When common behavior in
subclasses should be factored
and localized to avoid code
duplication

• To control subclass extensions
to specific operations

• Consequences
• Code reuse
• Inverted “Hollywood” control:

don’t call us, we’ll call you
• Ensures the invariant parts of

the algorithm are not changed by
subclasses

8 December 2005

Creational: Abstract factory
• Applicability

• System should be
independent of product
creation

• Want to configure with
multiple families of products

• Want to ensure that a
product family is used
together

• Consequences
• Isolates concrete classes
• Makes it easy to change

product families
• Helps ensure consistent

use of family
• Hard to support new kinds

of products

5

8 December 2005

Creational: Factory Method

• Applicability
• A class can’t anticipate

the class of objects it
must create

• A class wants its
subclasses to specify the
objects it creates

• Consequences
• Provides hooks for

subclasses to
customize creation
behavior

• Connects parallel
class hierarchies

8 December 2005

Creational: Singleton
• Applicability

• There must be exactly one
instance of a class

• When it must be accessible to
clients from a well-known place

• When the sole instance should
be extensible by subclassing,
with unmodified clients using the
subclass

• Consequences
• Controlled access to sole

instance
• Reduced name space (vs. global

variables)
• Can be refined in subclass or

changed to allow multiple
instances

• More flexible than class
operations

• Can change later if you need to

• Implementation
• Constructor is protected
• Instance variable is private
• Public operation returns

singleton
• May lazily create singleton

• Subclassing
• Instance() method can look up

subclass to create in
environment

6

8 December 2005

Structural: Proxy
• Applicability

• Whenever you need a more
sophisticated object
reference than a simple
pointer

• Local representative for a
remote object

• Create or load expensive
object on demand

• Control access to an object
• Reference count an object

• Consequences
• Introduces a level of

indirection
• Hides distribution from client
• Hides optimizations from client
• Adds housekeeping tasks

8 December 2005

What is an architecture?

• A software architecture is the structure or
structures of a system, which comprise
elements, their externally-visible properties,
and the relationships among them

• But what kinds of structure?
• modules: showing composition/decomposition
• runtime: components at runtime
• allocation: how software is deployed
• …

• Each is the basis of an Architectural View

7

8 December 2005

Component-and-Connector (C&C) View

• Decomposition of system into components…
• Components: principal units of run-time

computation and data stores
• Examples: client, server

• Typically hierarchical
• And connectors…

• Connectors: define an abstraction of the
interactions between components
• Examples: procedure call, pipe, event announce

• Using architectural styles…
• Guide composition of components and

connectors
• And constraints (or invariants)

8 December 2005

What Is Institutionalization?

•Institutionalization involves implementing
practices that
• Ensure processes can be communicated about

(they are defined, documented, understood)
• Ensure the processes are effective, repeatable

and lasting
• Provide needed infrastructure support
• Enable organizational learning to improve the

process

8

8 December 2005

Model Representations

Essentially the Same Content but Organized in a Different Way.Essentially the Same Content but Organized in a Different Way.Essentially the Same Content but Organized in a Different Way.

• Continuous• Continuous
Staged
…for a pre-defined set of process
areas across an organization

Staged
…for a pre-defined set of process
areas across an organization

CL0
(Incomplete)

P
ro

ce
ss

 A
re

a
C

ap
ab

ili
ty

PAPAPA

CL1
(Initial)

CL2

CL3

CL4

CL5

xyzMaturity Level 1
Initial: Process Unpredictable, Poorly Controlled, and Reactive

Maturity Level 2

REQM, PP, PMC, MA, PPQA, CM, SAM

Maturity Level 3

RD, TS, PI, VER, VAL, OPF, OPD, OT,
IPM, RSKM, DAR, OEI, IT, ISM

Maturity Level 4
OPP, QPM

Maturity Level 5

OID, CAR
Quantitatively Managed: Process
Measured and Controlled
Quantitatively Managed: Process
Measured and Controlled

Optimizing: Focus on
Process Improvement
Optimizing: Focus on
Process Improvement

Defined: Process Characterized
for the Organization and
Is Proactive

Defined: Process Characterized
for the Organization and
Is Proactive

Managed: Process
Characterized for Projects
and Is Often Reactive

Managed: Process
Characterized for Projects
and Is Often Reactive

2

3

4

5

Copyright 2003, CSSA, Inc. Used with permission.

8 December 2005

Black-box Testing

• Verify each piece of functionality of the system
• Black-box: don’t look at the code

• Systematic testing
• Test each use case
• Test combinations of functionality (bold + italic +

font + size)
• Generally have to sample

• Test incorrect user input
• Test each “equivalence class” (similar input/output)
• Test uncommon cases

• Generating all error messages
• Using uncommon functionality

• Test borderline cases
• Edges of ranges, overflow inputs, array of size 0 or 1

9

8 December 2005

White-box Testing

• Look at the code (white-box) and try to systematically
cause it to fail

• Coverage criteria: a way to be systematic
• Function coverage

• Execute each function
• Statement coverage

• Most common
• Edge coverage

• Take both sides of each branch
• Path coverage

• Note: infinite number of paths!
• Typical compromise: 0-1-many loop iterations

• Condition coverage
• Choose a set of predicates
• Cover each statement with each combination of predicates

• Exercise data structures
• Each conceptual state or sequence of states

• Typically cannot reach 100% coverage
• Especially true of paths, conditions

