
1

More XP

15-413: Introduction to Software
Engineering

Jonathan Aldrich

16 September 2005

Project Iteration Structure

• 3 week iterations
• Weeks 4-6 (starts next week!)
• Weeks 7-9, 10-12, 13-15+finals

• Documentation for each
• Beginning: plan, risks

• Includes functional test definitions
• End: results

• cost = person-hours of effort
• earned value =
ideal hours done * load factor

• new load factor = cost / ideal hours done
• Chart showing all three over time

16 September 2005

Review meetings

• Begin in week 5

• Purpose
• Communication

• Status update
• Discuss issues
• Answer questions

• Evaluate XP practices
• Discuss requirements, plan, risks

16 September 2005

Coding starts next week

• Are you ready to do XP?
• Let’s talk about requirements

16 September 2005

Planning

• Use cards. Why?

• Customer orders
• Primarily based on their business value
• Customer should be aware of risks

• Obvious importance to put risk first
• OK for engineering to reserve a portion

of the iteration effort for high-risk stories
• NECESSARY in iteration 1: there will be
a prototype requirement

• Ignore dependencies where possible
• Why?

16 September 2005

Dividing the work

• Divvy up the stories
• Each person takes ideal hours equal to

calendar hours / load factor
• Load factor initially 2

• You’ll adjust later

• Buy into the time estimates
• Developer with the story should re-

estimate if they disagree
• May require changing story allocation

• Find a buddy to pair with
• You’ll spend half your time being a

buddy for someone else’s stories

2

16 September 2005

Coding Requirements

• Pair programming

• CVS

• Test first
• Functional tests tied to stories
• Unit test for each unit of code (function, class)
• Automation for all tests

• Refactoring

• Can’t enforce these in homework
• Use review meetings instead
• Be prepared to discuss and show examples of

how you are following the practices

16 September 2005

Functional/Acceptance Tests

• Must be written before you implement
the story

• Crosses code boundaries

• Conceptually written by customer
• Must buy in to success criteria

• Ask, what would have to be checked
before I am confident this is done?
• Write a functional tests for each scenario

16 September 2005

Unit Tests

• Must be written before any non-trivial
functionality

• Must always be at 100% for checked-
in code
• Not true for functional tests
• Always run tests and ensure at 100%

before checking in code

• Should be independent
• Ideal: each bug makes only one test

case fail

16 September 2005

Unit Test: Bad or Good?

class Car {

int gas;

int getGas() { return gas; }

}

void myTest() {

Car c = new Car(5);

assert (c.getGas() == 5);

}

16 September 2005

Unit Test: Bad or Good?

class Math {

float divideBy2(float x) { return x/2; }

}

void myTest() {

assert(math.divideBy2(10.0)

== 5.0);

}

16 September 2005

Unit Test: Bad or Good?

class Math {
int divide5ByX(int x) {

if (x == 0)
throw new IllegalArgumentExn();

return 5/x;
}

}

void myTest() {
try {

math.divide5ByX(0);
assert(false);

} catch (IllegalArgumentExn e) {
assert(true);

}
}

3

16 September 2005

Unit Testing Principles

• Test anything that might fail
• Unclear interface
• Complicated implementation
• Unusual case of usage
• Defect found
• About to refactor

• Don’t test trivial methods
• No benefit
• Makes testing laborious

16 September 2005

Unit Test Challenges

• Creating test objects
• Design a constructor that completely

initializes the object, just for testing

• Collaborating objects
• Use stubs to unit test separately
• Refactor to make more independent

16 September 2005

Test Automation

• All your tests should be automatable
• If they aren’t, you better have a good reason

• File I/O: create input, check output
manually, automate comparison

• Build input recorder into program

• GUIs/Web
• Don’t test static structure
• Separate functionality and test programmatically
• Test interaction if you can

• [but limit the time sink in trying tools]

• Testing tools
• http://www.xprogramming.com/software.htm

16 September 2005

Refactoring

• You code must always be clean and
well-designed
• Documentation is not required by XP, but

may be required by your client!

• Fix as soon as you find out it’s not
ideal
• When we review your work, don’t ever

say, “we’re going to fix that”

• Principles
• Once and only once
• Keep it simple: write only enough to

pass test (with clean code)

16 September 2005

Defects

• Customer classifies as critical or not

• Critical
• Estimate effort, fix immediately
• If significant, customer chooses stories

of same effort to nix

• Non-critical
• Write as a story

• Maybe combine several
• Customer chooses when to fix

16 September 2005

Questions?

