
1

Concurrency Assurance
in Fluid

Related reading: Assuring and Evolving
Concurrent Programs: Annotations and
Policy

15-413:
Introduction to Software Engineering
Jonathan Aldrich

21 November 2005 2

Find the Concurrency Bug!
public class Logger {

private Filter filter;

public void setFilter(Filter newFilter)
throws SecurityException {

if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log (LogRecord record) { …
synchronized (this) {

if (filter != null && !filter.isLoggable(record))
return;

}
}

}

2

21 November 2005 3

PREfix: Language-Level Errors

• Error defined by language
• Precise characterization of error
• Any program that manifests that error is incorrect
• Easy to define fully automated analysis

• Example: null pointer dereference
• Occurs when *p is executed and p == null
• Can be found by tracking which pointers may be

null

21 November 2005 4

Concurrency Errors

• Example: data race condition
• (Definition from Savage et al., Eraser: A Dynamic Data Race Detector for

Multithreaded Programs)
• Two threads access the same variable v
• At least one access is a write
• No explicit mechanism prevents the accesses from being

simultaneous

3

21 November 2005 5

Concurrency Errors

• Example: data race condition
• (Definition from Savage et al., Eraser: A Dynamic Data Race Detector for

Multithreaded Programs)
• Two threads access the same variable v
• At least one access is a write
• No explicit mechanism prevents the accesses from being

simultaneous
• Challenges

• Difficult to check statically
• How to tell if accesses can be simultaneous?
• How to tell what synchronization mechanism is used?

• Not always an error
• Race may not affect correctness

• PREfix approach will not work
• Too many possibilities to explore, too many false positives

21 November 2005 6

Would Testing/Inspections Work?

4

21 November 2005 7

Would Testing/Inspections Work?

• Testing
• Difficult because concurrency errors are

non-deterministic

• Inspections
• Concurrency errors are often non-local

• Like errors that PREfix finds
• Require knowledge of programmer intent

21 November 2005 8

Fluid: Models are missing
• Programmer design intent is missing

• Not explicit in Java, C, C++, etc
• What lock protects this object?

• This lock protects that state
• What is the actual extent of shared state of this object?

• This object is “part of” that object

• Adoptability
• Programmers: “Too difficult to express this stuff.”
• Fluid: Minimal effort — concise expression

• Capture what programmers are already thinking about
• No full specification

• Incrementality
• Programmers: “I’m too busy; maybe after the deadline.”
• Fluid: Payoffs early and often

• Direct programmer utility – negative marginal cost
• Increments of payoff for increments of effort

5

21 November 2005 9

Reporting Code–Model Consistency

Tool analyzes model/code consistency
• No model ⇒⇒⇒⇒ no assurance
• Identify likely model sites

Three classes of results
• Code–model consistency

• Code–model inconsistency

• Informative — Request for annotation

21 November 2005 10

BoundedFIFO
public class BoundedFIF0 {
//@aggregate [] into Instance
//@unshared
LoggingEvent[] buf;

//@ lock BufLock is this protects Instance

int numElts = 0, first = 0, next = 0, size;

public BoundedFIF0(int size) { … }

//@ requires BufLock
public LoggingEvent get() {

if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = 0;
numElts--;
return r;

}

//@ requires BufLock
public void put(LoggingEvent o) {

if(numElts != size) {
buf[next] = o;
if(++next = = size) next = 0;

numElts++;
}

}

//@ requires BufLock
public int getMaxSize() {

return size;
}

// no annotation required
public synchronized void resize(int

newSize) { … }
...
}

6

21 November 2005 11

BoundedFIFO Client

public class FIF0Client {
private final BoundedFIFO fifo = …;
…
public void putter(LoggingEvent e) {

synchronized(fifo) {
while(fifo.isFullO) {

try { fifo.wait(); }
catch(InterruptedExn ie) {}

}
fifo.put(e);
if(fifo.wasEmptyO) fifo.notify();

}
}

public LoggingEvent getter() {
synchronized(fifo) {

LoggingEvent e;
while(fifo.length() == 0) {

try { fifo.wait(); }
catch(InterruptedExn ie) { }

}
e = fifo.get();
if(fifo.wasFull()) fifo.notify();
return e ;

}
}

public int length() {
synchronized(fifo) { return fifo.length();
}

}

21 November 2005 12

Logger Revisited
/** @lock FilterLock is this protects filter */
public class Logger {

private Filter filter;

public void setFilter(Filter newFilter)
throws SecurityException {

if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log (LogRecord record) { …
synchronized (this) {

if (filter != null && !filter.isLoggable(record))
return;

}
}

}

7

21 November 2005 13

How Incrementality Works
• Incrementality

• When you annotate a portion
of the program, you’ll get
immediate feedback on
concurrency correctness

• Incremental benefit for each
unit of cost

• How can one provide incremental
benefit with mutual
dependencies?

Call Graph of Program

21 November 2005 14

assured region

How Incrementality Works
• Incrementality

• When you annotate a portion
of the program, you’ll get
immediate feedback on
concurrency correctness

• Incremental benefit for each
unit of cost

• How can one provide incremental
benefit with mutual
dependencies?

• Cut points
• Method annotations partition

call graph
• Can assure property of a

subgraph
• Assurance is contingent on

accuracy of trusted cut point
method annotations

Call Graph of Program

cut point

8

21 November 2005 17

Questions for Evaluating Tools

• What class of errors does the tool find?
• And can that class be found with other techniques?

• Can the tool miss errors?

• How many false errors does it report?

• Can I run it on part of a system?

• How much manual effort is required?

• Does it find errors across procedure
boundaries?

• Does it scale to large systems?

