Carnegie Mellon

Formal Verification by Model
Checking

Jonathan Aldrich
Carnegie Mellon University

Based on slides developed by Natasha Sharygina

15-413: Introduction to Software Engineering
Fall 2005
3

Carnegie Mellon

Formal Verification by Model Checking

Domain: Continuously operating concurrent systems (e.g. operating
systems, hardware controllers and network protocols)

» Ongoing, reactive semantics
* Non-terminating, infinite computations
* Manifest non-determinism

Instrument: Temporal logic [Pnueli 77] is a formalism for reasoning
about behavior of reactive systems

Carnegie Mellon

Temporal Logic Model Checking

[Clarke,Emerson 81][Queille,Sifakis 82]

Systems are modeled by finite state machines
Properties are written in propositional temporal logic

Verification procedure is an exhaustive search
of the state space of the design

Diagnostic counterexamples

Carnegie Mellon

Temporal Logic Model Checking

Finite Sate
Machine

r Preprocessi —I

Property

Model Checker —I

|

True or Counterexample

Carnegie Mellon

What is Model Checking?

Does model M satisfy a property P ?
(written M |= P)

What is “M"?
What is “P"?

What is “satisfy”?

Carnegie Mellon

What is “M"?

States: valuations to all variables
Initial states: subset of states @

Arcs: transitions between states

Atomic Propositions: @ °

e.g. x=5, y=true

State Transition Graph or Kripke M odel

Carnegie Mellon

What is “M"?

M = <81801R1L>

Kripke structure:
S — finite set of states
S, 0 S —set of initial states
R 00S xS -—setof arcs

L:S - 2*° — mapping from states to a set of
atomic propositions

Carnegie Mellon

Model of Computation

State Transition Graph Infinite Computation Tree
Unwind State Graph to obtain Infinite Tree.

A trace is an infinite sequence of states. 10

Carnegie Mellon

Semantics

State Transition Graph Infinite Computation Tree

The semantics of a FSM is a set of traces. Semantics of the

composition of FSMs is the intersection of traces of individual FSMs.
11

Carnegie Mellon

What is “P”?

Different kinds of temporal logics

Syntax: What are the formulas in the logic?
Semantics: What does it mean for model M to satisfy
formula P?

Formulas:

- Atomic propositions: properties of states
- Temporal Logic Specifications: properties of traces.

12

Carnegie Mellon

Computation Tree Logics

Examples: Safety (mutual exclusion): no two processes can be at a critical
section at the same time

Liveness (absence of starvation): every request will be
eventually granted

Temporal logics differ according to how they handle branching in the underlying
computation tree.

In a linear temporal logic (LTL), operators are provided for describing system
behavior along a single computation path.

In a branching-time logic (CTL), the temporal operators quantify over the paths

that are possible from a given state.
13

Carnegie Mellon

Computation Tree Logics

Formulas are constructed from path quantifiers and temporal operators:

1. Path Quantifiers:
e A -"“for every path”
o E - “there exists a path”

2. Temporal Operator:

o Xa - aholds next time

o Fa - a holds sometime in the future
e Ga- aholds globally in the future
e aUB- aholds until B holds

14

Carnegie Mellon

Formulas over States and Paths

State formulas
Describe a property of a state in a model M
If p € AP, then p is a state formula

If f and g are state formulas, then =f, f 0 g and f 00 g are state
formulas

If fis a path formula, then E f and A f are state formulas
Path formulas

— Describe a property of an infinite path through a model M
— If fis a state formula, then f is also a path formula

— If f and g are path formulas, then =f, f O0g,f0Og, Xf, Ff, Gf,
and f U g are path formulas

15

Carnegie Mellon

Notation

A path @ in M is an infinite sequence of states
Sos S1,-.- Such that for every i 20, (s;, s;;;) U R

' denotes the suffix of = starting at s,

If f is a state formula, M, s = f means that f
holds at state s in the Kripke structure M

If fis a path formula, M, © = f means that f
holds along path = in the Kripke structure M

16

Carnegie Mellon

M,sEep
M,S|:—|f
M, s = f, Of,
M, s = f, Of,
M,s=EgQ;
M,s=AgQ,

Semantics of Formulas

i

i

i

p O L(s)

M, sk f
M,sef,0OM,sEf,
M,sef,0OM,sEf,
h=s... M, =0,
On=s...M, nE=Q,

M, nef

M, =g

M, n=g,009,
M, n=g,009,
M, t=Xg
M,t=Fg
M,t=Gg
M,t=9,UQ,

=

=

n=s... M, sef

M, mrg
M,t=g9,OM, TtEQ,
M,t=g,OM, tEQ,
M, il g
(k=0 |M, k=g
O0k=0 | M, k=g
k=0 | M, 7k = g,

000<sj<k M, @ = g,

17

Carnegie Mellon

The Logic LTL

Linear Time Logic (LTL) [Pnueli 77]: logic of temporal sequences.

Has form A f where f is a path formula which has no path quantifiers (A or E)

e a. a holds in the current state

« AXa. aholds in the next state

* AFy. yholds eventually

¢« AGA: A holds from now on

*A(aU B): aholds until Bholds

18

Carnegie Mellon

The Logic CTL

In a branching-time logic (CTL), the temporal operators quantify over the paths that
are possible from a given state (s;). Requires each temporal operator (X, F, G, and
U) to be preceded by a path quantifier (A or E).

c
c ‘\ c
M,s,=AFC
c
c c
Q
N O\ c
M,s,FEFcC M,s,FEGC .
Carnegie Mellon
Typical CTL Formulas
. EF (Started O~ Read)): it is possible to get to a state where Started holds but

Readly does not hold.

. AG (Req = AF Ack): whenever Reguest occurs, it will be eventually
Acknowledged.

. AG (DeviceEnabled): DeviceEnabled always holds on every computation
path.

. AG (EF Restart): from any state it is possible to get to the Restart state.

20

Carnegie Mellon

Announcements

» Please email your Stack.java file to Marwan
for Assignment 8 part 4

— This will help with the grading

21

Carnegie Mellon

Trivia
* AG(EF p) cannot be
expressed in LTL

— Reset property: from every
state it is possible to get to p

« But there might be paths °

where you never get to p
— Different from A(GF p)
¢ Along each possible path, for
each state in the path, there ° °
is a future state where p
holds
¢ Counterexample: ababab...

22

10

Carnegie Mellon

Trivia
* A(FG p) cannot be

expressed in CTL

— Along all paths, one eventually
reaches a point where p So

always holds from then on .

* But at some points in some
paths where p always holds,
there might be a diverging

S1 S,
path where p does not hold ° °
— Different from AF(AG p)
« Along each possible path

there exists a state such that
p always holds from then on
* Counterexample: the path that
stays in s,
23

Carnegie Mellon

LTL Conventions
» Often leave the initial A implicit

* G is sometimes written O
* Fis sometimes written ¢

24

11

Carnegie Mellon

Linear vs. branching-time logics

some advantages of LTL

LTL properties are preserved
under “abstraction”: i.e., if M
“approximates” a more complex
model M’, by introducing more
paths, then

MEY= MEY
“counterexamples” for LTL are
simpler: consisting of single
executions (rather than trees).
The automata-theoretic approach
to LTL model checking is simpler
(no tree automata involved).

anecdotally, it seems most
properties people are interested in
are linear-time properties.

some advantages of BT logics

BT allows expression of some
useful properties like ‘reset’.
CTL, a limited fragment of the
more complete BT logic CTL*,
can be model checked in time
linear in the formula size (as
well as in the transition system).
But formulas are usually far
smaller than system models, so
this isn’t as important as it may
first seem.

Some BT logics, like p-calculus
and CTL, are well-suited for the
kind of fixed-point computation
scheme used in symbolic model
checking.

25

Carnegie Mellon

CTL Model Checking

Theorem: Any CTL formula can be expressed in terms of -, [,

EX, EU, and EG.
— Fp=trueUp

— AlxUy] ==(EG -y OE[-y U ~(xy)])

— AXp=-EX-p
- AGp:—!EF—!p

Model checking: determine which states of M satisfy f

Algorithm

— Consider all subformulas of f, in order of depth of nesting
— Initially, label each state with the atomic subformulas that are true

in that state

— For each formula, use information about the states where the

immediate subformulas are true to label states with the new formula

26

12

Carnegie Mellon

Subformula Labeling

» Case -f
— Label each state not labeled with f
o f,0f

— Label each state which is labeled with either f, or f,
e EXf

— Label every state that has some successor labeled with f
o E[f,Uf,]

— Label every state labeled with f,

— Traverse backwards from labeled states; if the previous state is
labeled with f,, label it with E[f, U f,] as well

* EGT,
— Find strongly connected components where f, holds

— Traverse backwards from labeled states; if the previous state is
labeled with f,, label it with EG f, as well

27

Carnegie Mellon

CTL Model Checking Example

» Pressing Start will eventually
result in heat

13

Carnegie Mellon

CTL Model Checking Example

» Pressing Start will eventually
result in heat

AG (Start = AF Heat)

= - EJtrue U (Start 0 EG - Heat)]

Carnegie Mellon

CTL Model Checking Example

* The oven doesn’t heat up until
the door is closed.

14

Carnegie Mellon

CTL Model Checking Example

* The oven doesn’t heat up until
the door is closed.

A[(=Heat) U Close]

= -EG - Close

O-E[-Close U (Heat (0 - Close)]

Carnegie Mellon

LTL Model Checking

» Beyond the scope of this course

» Canonical reference on Model Checking:

— Edmund Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. MIT Press, 1999.

32

15

Carnegie Mellon

SPIN: The Promela Language
* PROcess MEta LAnguage

» Asynchronous composition of independent
processes

« Communication using channels and global
variables

* Non-deterministic choices and interleavings

33

Carnegie Mellon

An Example

nmtype = { NONCRITICAL, TRYING CRITICAL };
show ntype state[?2];
proctype process(int id) {
begi nni ng:
noncritical:
state[id] = NONCRITICAL;
if
:: goto noncritical;

11otrue;
fi;
trying:
state[id] = TRYING
if
:: goto trying;
11otrue;
fi;
critical:

O

state[id] = CRITICAL;
if
:: goto critical;
11otrue;
fi;
got o begi nning; }
init { run process(0); run process(1); }

34

16

Carnegie Mellon

Enabled Statements

» A statement needs to be enabled for the
process to be scheduled.

bool a, b; These statements are enabled
proctype PO only if both a and b are true.
a = true;
a & b; . N
a = fal se; In this case b is always false
) 20 and therefore there is a
roct e
? e e deadlock.
b = fal se;
a & b;
b = true;
)

init { a="false; b =false; run pl(); run p2(); }

42
Carnegie Mellon
Other constructs
* Do loops
oo = come - 5
43

17

Carnegie Mellon

Other constructs

* Do loops
« Communication over channels

proct ype sender (chan out)

{

44
Carnegie Mellon
Other constructs
* Do loops

e Communication over channels
* Assertions

proctype receiver(chan in)
{
int val ue;
in ? value;
assert(value == 0 || value == 1)

}

45

18

Carnegie Mellon

Other constructs

Do loops

Communication over channels
Assertions

Atomic Steps

int val ue;
proct ype increnment()
{ atomc {

x = val ue;

X =x + 1;

val ue = x;

P}

46

Carnegie Mellon

Mutual Exclusion

e Peterson’s solution to the mutual exclusion
problem

flag,=0

flag, =0 &&turn 1= 0

flag, ==0|| turn ==0

Critical
Section

47

19

Carnegie Mellon

Mutual Exclusion in SPIN

bool turn;

guard:
bool flag[2]; Cannot go past this point
proctype mutex0() { until the condition is true

again: . ‘

flag[0] = 1;
turn = 1; flag,=1

(flag[1] == 0 || turn == 0); '

/* critical section */ turn=1 flag ,=0

ﬂag[O] = 0; ~
to auin: flag, = 0 && turn 1= o[‘
goto again; .
‘ ‘ Critical

Section

} flag, == 0 || turn ==

Carnegie Mellon

Mutual veliicinn in CDINI

Active process:
bool turn, Flag[2¥? | automatically creates instances of processes

active [2] proctype user() -
{ _pid:
. 77 | Identifier of the process

(flag[1l - _pid _pid);

assert:
Checks that there are only
at most two instances with
identifiers 0 and 1

/* critical section */

L4
flag[_pid] = 0;
goto again;
}
49

20

Carnegie Mellon

Mutual Exclusion in SPIN

bool turn, flag[2]; ncrit:
byte ncrit; Counts the number of
active [2] proctype user() Process in the critical section
{
assert(_pid == 0 || _pid == 1);
again:

flag[_pid] = 1;
turn = 1 - _pid;

(flag[1l - _pid] == 0 || turn == _pid);
ncrit++;
asserg(ncrit == 1); /* critical section */

ncrit--;

assert:

Checks that there are always
at most one process in the
critical section

flag[_pid] = 0;

goto again;

50

Carnegie Mellon

Mutual Exclusion in SPIN

bool turn, flag[2];

bool critical[2]; LTL Properties:
active [2] proctype user(Q The processes are never both
{ in the critical section
assert(_pid == 0 || _pid = 1); AG(!(critical[0] && critical[1]))
again: [1(*(critical[0] && critical[1]))
flag[_pid] = 1;
turn = 1 - _pid; No matter what happens, a
(flag[1l - _pid] == 0 || turn == _pid); process will eventually get to
a critical section
critical[_pid] = 1; [1 <> (critical[0] || critical[1])
/* critical section */
critical[_pid] = 0; If process 0 is in the critical
section, process 1 will get to
flag[_pid] = 0; be there next
goto again; [] (criticaI[O] -> CriticaI[O] U
} (‘critical[0] U critical[1]))

51

21

Carnegie Mellon

Mutual Exclusion in SPIN

bool turn, flag[2];
bool critical[2];

LTL Properties:

active [2] proctype user()

{ [1 /(critical[0] && critical[1])
assert(_pid == 0 || _pid == 1);
again: [] <> (CrlthG{'[O])
flag[_pid] = 1; [<> (critical[1])
turn = 1 - _pid;
(Flagl1 - _pid] == 0 || turn = _pid);] (critical[0] ->

(critical[0] U
(‘critical[0] &&
((*critical[0] &&
Icritical[1]) U critical[1]))))

critical[_pid] = 1;

/* critical section */

critical[_pid] = 0;

flag[_pid] = 0;

goto again; * caveat: can't use array indexes in SPIN LTL properties
¥ Have to duplicate code
52

Carnegie Mellon

State Space Explosion

Problem:
Size of the state graph can be exponential in size of the
program (both in the number of the program variables and the
number of program components) e

M=M, || ... || M

n

If each M, has just 2 local states, potentially 2" global states

Research Directions: State space reduction
53

22

Carnegie Mellon

Model Checking Performance

*Model Checkers today can routinely handle systems with between
100 and 300 state variables.

«Systems with 102 reachable states have been checked.

*By using appropriate abstraction techniques, systems with an
essentially unlimited number of states can be checked.

54

Carnegie Mellon

Notable Examples

» |EEE Scalable Coherent Interface —In 1992 Dill’s group at
Stanford used Murphi to find several errors, ranging from
uninitialized variables to subtle logical errors

» |EEE Futurebus —1In 1992 Clarke’s group at CMU found previously
undetected design errors

» PowerScale multiprocessor (processor, memory controller, and
bus arbiter) was verified by Verimag researchers using CAESAR
toolbox

» Lucent telecom. protocols were verified by FormalCheck — errors
leading to lost transitions were identified

» PowerPC 620 Microprocessor was verified by Motorola’s Verdict
model checker. 55

23

Carnegie Mellon

The Grand Challenge:
Model Check Software

Extract finite state machines from programs written in conventional
programming languages

Use a finite state programming language:
« executable design specifications (Statecharts, XUML, etc.).

Unroll the state machine obtained from the executable of the program.

56

Carnegie Mellon

The Grand Challenge:
Model Check Software

Use a combination of the state space reduction techniques to avoid

generating too many states.

* Verisoft (Bell Labs)

¢ FormalCheck/xUML (UT Austin, Bell Labs)
* ComFoRT (CMU/SEI)

Use static analysis to extract a finite state skeleton from a program.

Model check the result.
¢ Bandera —Kansas State
¢ Java PathFinder — NASA Ames
« SLAM/Bebop - Microsoft

57

24

