Institutelfor; Software Research International
—_— School of Computer Science

CarnegieMellon

Software Architectures

Presenter: Marwan Abi-Antoun

Slides Courtesy of Professor David Garlan

Why Document Architecture?

o Blueprint for the system
n Artifact for early analysis
n Primary carrier of quality attributes
n Key to post-deployment maintenance and
enhancement
o Documentation speaks for the architect, today
and 20 years from today

n As long as the system is built, maintained, and
evolved according to its documented architecture

What is Wrong Today?

o In practice today’s documentation
consists of
n Ambiguous box-and-line diagrams
n Inconsistent use of notations

n Confusing combinations of
viewtypes A
VD /:

o Many things are left unspecified: 7N
n What kind of elements?
n What kind of relations?
n What do the boxes and L o

arrows mean?

n What is the significance of
the layout?

What could the arrow mean?

o Many possibilities
n A passes control to B
A passes data to B n
A gets a value from B
A streams data to B
A sends a message to B
A creates B

5 3 3 5 5 S

Guidelines: Avoiding Ambiguity

Always include a legend
Define precisely what the boxes mean
Define precisely what the lines mean
Don’t mix viewtypes unintentionally
n Recall: Module (classes), C&C (components)
o0 Supplement graphics with explanation
n Very important: rationale (architectural intent)
o Do not try to do too much in one diagram
n Each view of architecture should fit on a page
n Use hierarchy

o O o o

Technique: Multiple Views

o Separate views to manage complexity
n Provide clean separation of concerns
n But lead to the problem of relating them and finding
inconsistencies between them!
o Showing how views relate to each other can
help better understand the architecture

Overlay of C&C with Tiers Overlay of Allocation and C&C

=)

Top-level C&C View
Technique: Hierarchy
o Use hierarchy to define elements in more © e
detail in separate views @ oo
o Helps keep an architectural description g .
manageable
9
Showing Details of Component Analyzing Architectures

o To more precisely document an architecture, you can
use an Architecture Description Language (ADL)

o We're going to illustrate one such ADL, Acme:
n Supports hierarchical design
n Support architectural styles

Transaction
Coordinator
=

n Supports expressing/analyzing extra-functional
properties (performance, reliability, etc.)

n Does not support checking of conformance of
implementation to architecture

Many Architecture Description
Languages

o Each comes with different analysis capabilities
Rapide: events with simulation and animation
UniCon: emphasizing heterogeneity and compilation
Wright: formal specification of connectors
Aesop/Acme: style-specific arch design languages
Darwin: service-oriented architectures

SADL: architectural refinement

Meta-H: arch description for avionics domain

C-2: arch style using implicit invocation

>3 3 3 3 3 3 3 S

AcmeStudio Demo

o Create/Modify a Family
o Create/Modify a System

Acme Primer

o Family

n Component Types, Port Types, Connector Types, ...
o Components

n Ports
o Connectors

n Roles

Attachments

System

Representations

n Bindings

Components and Ports

o Components
n Represent the computational elements and data
stores of a system.
o Ports

n Are the points of interaction between a
component and its environment.

Component
Port
7

Connectors and Roles

o Connectors
n Represent interactions between components
such as method calls or an SQL connection
o The interface of a connector is defined as a
set of roles (think of it as the “protocol”)

Connector

/
B

Role

Attachments

o Attachments
n Links a component port to a connector role.

Attachment

System

o System

n A set of components, a set of connectors, and a set
of attachments, assigned a set of styles and

types

Representations and Bindings

Il Component
@B Connector
B port
" Role
— Attachment
~ Binding

\ ——Attachment Binding s
Bt

Representation

Kinds of Architectural Analyses

n Consistency
o Do the parts fit together?
n Completeness
o Are parts missing?
n Refinement
o Can one architecture be substituted for another?
n Verification
o Does an implementation conform to the architecture?
n System-wide behavior, performance, reliability, etc.
o What is the aggregate behavior, performance, reliability of a
system, given the .. of the parts?
n Impact analysis
o Architectural Tradeoff Analysis Method (ATAM)
n Others?

Analysis Strategies

o Use existing specification languages &
calculi
n Examples: CSP, Queuing Theory, etc
n Advantages: well understood, tools, reuse
n Disadvantages: may not be expressive; may
require a lot of initial “context building” before
you can do anything useful
o Develop new architectural specification
languages & reasoning techniques
n Examples: use Wright for checking behavior
n Advantages: good match to the problem

n Disadvantages: learning curve, proliferation of
languages and tools

Analysis: consistency &
completeness

o Consistency: do the parts fit together?
n analog of type checking
n depends on what you say about the parts
n behavior example: does the behavior of a
component conform to the protocols of a connector
to which it is attached?

T e

o Completeness: are any parts missing?
n connector roles?
n unattached ports?
n missing functionality?

Example of a completeness check

o Example completeness rule: All clients need to
be attached to at least one server.
n Client with no server is incomplete
n ... but server with no client is fine.
n Completeness rules can be style-specific

Client Client Client

N

Server

Client Client

Server

24

Example Consistency Checking

o Key idea: Acme can capture complex
constraints about an architectural style

o AcmeStudio (the tool) can be used to
automatically check an architecture's
conformance to these constraints.

o Example: Topological constraints of a complex
family of NASA systems.

Specifying Architectural Constraints

o Acme includes a constraint language
n Based on first-order predicate logic
n Augmented with architecture-specific predicates
o connected(compl, comp?2), self.ports,
self.components, ...
o Examples:
n A particular type of component can only have
particular types of ports
n Property values must have certain values
o Two types of constraints
n Invariants must never be violated
n Heuristics may be selectively violated

Recall Acme Constraints

‘ Component Type naive-client = {

Port Request ={
Property protocol = rpc-client };

Property request-rate : integer
<< default = 0; units = “rate-per-sec” >>;

Invariant forall p in self.Ports |
(p.protocol = rpc-client);

Invariant size(Ports) <= 5;

Invariant request-rate >= 0;

Heuristic request-rate <= 100;

Consistency Example: MDS
Architectural Style

o MDS defines an architectural framework for a
family of NASA systems
n System of architectural component types
n Rules on how they can be connected

o Checking/ensuring conformance to MDS is an
important and hard problem
n Many rules, many components, complex

interconnection topology

Acme MDS Architectural Style

o To specify the MDS style requires
n 8 Component types (sensor, actuator, estimator ...)

n 12 Connector types (measurement query, command
submit, state update)

n 22 Interface types
o MDS rules defined using first order predicate
logic
n Ten rules in English from MDS designers become 38
checkable predicates

Acme System in the MDS Style

Constraint Execution
"

5% .
I| State Notification
] —| State Query

‘:u

L ¥—4g)mnex Command Submit
g1 j

AA—A-
Estimator

Command Notif.

State Update

Measurement Query =
‘_ .'
30

Example MDS Rule

o As specified by MDS designers:

For any given Sensor, the number of
Measurement Notification ports must be
equal to the number of Measurement
Query ports (rule R5A).

o Acme rule (associated with the sensor
component type):

numberOfPorts (self, MeasurementNotifReqrPortT) ==
numberOfPorts (self, MeasurementQueryProvPortT)

Checking the MDS Rule

P MeasurementQueryReqrrortT
- ProviderPortT

P RequirarPortT

<1 StateNotifProvPortT

B StateNotifReqrPortT

« StateQueryProvPortT

» StateQueryReqrPortT

« StateUpdateProvPortT

> StatelipdateReqrPortT

o1 : ~ > Commandiiotg@rov@laT

Acme Source | Famiy - MDSFam | System - anMsL

1 Element View Hm x

Name: |TSEN Description |
Properties Ruls |structure | Representations | Errors| Types|
v Asensor cannot be informative and only have raw data

port:
afh Rule 5A.2: There must be a one-to-one correspondence between measurement notfication and query ports
A invariant Foral pin sef.ports | O Exists tin T, Measurement T, ExecutePr...

32

More MDS Rules

o Rule 4:“Every estimator requires 0 or more
Measurement Query ports. It can be 0 if estimator does
not need/use measurements to make estimates, as in
the case of estimation based solely on commands
submitted and/or other states. Every sensor provides
one or more Measurement Query ports. It can be more
than one if the sensor has separate sub-sensors and
there is a desire to manage the measurement histories
separately. For each sensor provided port there can be
zero or more estimators connected to it. It can be zero if
the measurement is simply raw data to be transported
such as a science image. It can be more than one if the
measurements are informative in the estimation of more
than one state variable.”

Checking More MDS Rules

o As specified by MDS designers:
"“...It can be more than one if the sensor has separate
sub-sensors and there is a desire to manage the
measurement histories separately....”

o Acme rule (associated with the sensor
component type):
(numberOfPorts(self, MeasurementQueryPort) > 1)

self.manageHistoriesSeparately AND
hasCommandableSubunits(self));

where
hasCommandableSubunits = ...

Analyzing system-wide properties

o Key idea: calculate properties of a system,
given properties of its parts

o Different kinds of properties will have different
calculi for compositionality

o Usually depends on using a specific style

n Example 1: queuing theory can be used to calculate
overall throughputs and latencies if use asynchronous
message passing style

n Example 2: reliability block diagrams can be used to
determine aggregate reliability from the parts, for
certain styles

Performance Analysis Alternatives

o Measurement
n Most accurate; modifications difficult
n Requires existing system, workload
o Simulation
n Accuracy and ease of modifications vary
n Requires existing simulator, workload
o Analytical model
n Back-of-the-envelope accuracy in design phase

n Nontrivial systems require nontrivial calculation;
analysis tools can help.

Architectural Performance Analysis

Try out various “what-if” scenarios,
Obvious ways to deal with a bottleneck
component:
n replicate it,
n speed it up, or
n reduce the demand on the system.
o Options may vary in expense and difficulty, or
even feasibility

Example 1: Performance
predictions

Problem: Evaluate performance of a three-
tier medical informatics system

2
\

N e
by ey gl 1 G SaibatastoreT

Evaluate performance of a three-
tier medical informatics system

= =
= o

o Can the servers handle the
expected demand?

o Will the average response
time meet requirements?

o How large should the
buffers be?

o Highest demand the servers
can handle?

o Which component is the
bottleneck? Hospital MIS System

o How would server/database
replication affect this?

Queuing Network Theory 101

o Basic units of a queuing network:

n Queues: A buffer with some queuing discipline
(e.g., FIFO, round robin)

n Service centers: provides some necessary service
o Service center:
n Has a queue containing jobs to process
n Can be replicated: i.e., m identical providers of
service, which draw their jobs from a single queue
o A queuing network is an interconnected group
of these queues.

n Jobs enter the network, receive service at service
centers, and leave

40

Queuing Network Theory 102

o Given for each service center
n average arrival rate of jobs
n average service time to process a job
o Assumptions
n asynchronous arrival of jobs in queues
n exponential rates, independence
n each job exists in exactly one place at a time

a1

Queuing Network Predictions

Utilization (fraction of time the service center is occupied)
Average time a job spends waiting in the queue
Average queue length
Probability that the queue length is n
Latency: the time for a job to be completely processed
Throughput: the rate at which jobs are processed
Number of outstanding jobs in the system
Most-utilized service centers, i.e., possible bottlenecks
Whether the system is stable or overloaded
n In an overloaded system, queue grows faster than jobs can be
processed; the server cannot keep up
n For a queue implemented as a buffer of length B, the rate at
:vafgiec)h incoming jobs are discarded due to buffer overflow (drop

O 0000 O0OO0OO0OOo0

42

Naive Application to Architectures

o Define an architectural style in which
n Service centers - distributed processing
components
n Transmission lines - directional asynchronous
message passing connectors

o Associate service times with components and
arrival rates with system

o Use Queueing Networks to calculate derived
values for the components and the system

43

Complicating Factors

o Cycles
n jobs may pass through same component several
times before exiting
o Autonomous clients
n generate jobs by themselves
o Delays in connectors
n present for architectures of real systems
o Replication
n meaning and effect on calculations

44

Modeling Performance in Acme

Family PerformanceFam = {
Component Type PerformanceComponent = {
perf-replication : int;
perf-overloaded : boolean;
perf-serviceTime : float;
perf-responseTime : float;
perf-utilization : float;

}

Connector Type PerformanceConnector ={
perf-delayTime : float;

} 45

Modeling Three-Tier Family in Acme

Family WebThreeTier extends PerformanceFam with {

Component Type BrowserT extends
PerformanceComponent with {...}

Component Type SqlDataStore extends
PerformanceComponent with {...}

Component Type BusinessLogic extends
PerformanceComponent with {...}

Modeling the System

System med-informatics : ThreeTierFam = {
Component infectious-diseases-ui : BrowserT =

Cb}hbonent microbiology-ui : BrowserT ={...};
Component pharmacy-ui : BrowserT ={...};

Component simple-server : ServerT ={
Property perf-replication = 10;
..}

Component trend-tracker : ServerT = {
Property perf-replication = 1;

.}

QN Example: Local Properties

User defines local

47

performance properties by: M

n Simulation

n Guesstimate

n Measured values . rend-racker simplesener
Component T~

Ports g >&

o m -

i
Hospital MIS System
Property
48

QN Example: Emergent Global
Properties

System hospitalMIS
Property

Component
Ports
Property
Property.

Hospital MIS System

Tobl computes system-wide
~“performance properties based|
on configuration

49

Architectural Analysis in Acme

o In Acme (the language):
n Capture performance-related properties in a family
n Systems desiring performance analysis (and satisfy
the assumptions) use this family
n Acme properties
n Acme constraints
o In AcmeStudio (the tool):
n Calculate the values related to the properties

Results of Performance Analysis

o The “trend-tracker” is overloaded (but neither

of the databases)

ames [enrcier Descrpton

ropetes| muks | ype | srucure| eprsetons PSS
Spctd Properes:

\ Xy
/
0 Lo

Cakuted Propertes:

Service Time: 12000 ms Avg Umaon: 00 %
Degree o Repication: [1 Avg. Queue Length: 0.0

e T

Element View|Tasks Problems Error Log

What can we do about overloading?

Scaling Strategies

o Goal of scaling: eliminate performance bottlenecks in application
o Vertical partitioning

n Add cache to process application requests more quickly

n Ex: cache some data (e.g., list of countries) instead of hitting database
o Vertical scaling

n Buy a bigger machine

n More expensive from a hardware standpoint but cost less to maintain
o Horizontal partitioning

n Partition application onto different servers.

n For example: Split off reporting server onto another server

n Requires careful thought about slicing the application
o Horizontal scaling

n Buy a farm of identical machines

n Drawback: you cannot store state information on any given machine

n__ Cheaper from a hardware standpoint but cost more to maintain

Example 2: Reliability predictions

o Basic idea: apply Reliability Block
Diagrams to Software Architecture
n Reuses well developed reliability model
n Slightly modified to work with Software
Architectures
o Initial information includes:
n reliability of individual components
n topology of interaction, concurrency, replication
o From this we calculate expected reliability
of the system as a whole.

Reliability model for SW Architecture

o Reliability defined as R = e*T where:
o A\ is a component’s failure rate

o T is the time period over which reliability is
measured

Reliability Block Diagrams Example

R1
— R1— R2 ——m RN — R2
Rn
— n) TSRS n s
Ros= fIR Ry =1- [10-R)

Reliability Block Diagram (RBD)
Complications

o Simple model has some complications
n Concurrency
n Distribution
n Dynamism
n Connectors may be unreliable
o These complications are addressed for many
(but not necessarily all) styles.

n For details, see [AbdAllah97] Abd-Allah,
Ahmed, “Extending Reliability Block Diagrams
to Software Architectures”, USC Technical
Report USC-CSE-97-501

Detailed RBD Example

Modeling a Java/WWW-based client-server system*

- 100%
WWW Server Java Client R = eAT
______ > e
2 failures/1000n 10 N %
= 7% %
3 \(\s %
x 3 50,
Database A Database A Database A é S 50%
3 1 2]
3z e
g 2%
2+3+1+2
Aserver =——— =2
4 o%
_ 12 3 4 s
/‘clienl =10

Number of clients

Asyslem = /‘serve(+ rMcliem (for n=0)

* Example borrowed from [AbdAl1ah97]

Specifying Architectural Behavior

Pipe
o s Fs

Which is the reading/writing end of the pipe?
Is writing synchronous?

What if F, tries to read and the pipe is empty?
Can F, choose to stop writing?

Can F, choose to stop reading without
consuming all of the data?

If F, closes the pipe, can it start writing again?
o If F, never reads, can F1 write indefinitely?

59

O O o oo

o

Questions

10

