School of Computer Science

CarnegieMellon

Software Architectures

Presenter: Marwan Abi-Antoun

Slides Courtesy of Professor David Garlan

From Requirements to Code...

How to bridge T - Ad hoc
the gap between - Requires gurus
problems and A Miracle Happens! - Unpredictable
solutions?

- Costly

Implementations

The Role of Software Architecture

- High-level

@ abstractions
(components,

- Reuse of

Software Architecture design idioms

Implementations

connectors, ...)

Quick Survey

o What is an architect?

The Role Of The Architect

o Understand business needs and project requirements

o Be aware of a variety of technical approaches to solving the
problems presented

o Evaluate tradeoffs between these approaches

o Translate the needs and tradeoffs into a technical
architecture that addresses the problems and makes the
appropriate tradeoffs

o Guide development team to build system as designed

o “Soft” skills are as important as technical skills

Quick Survey

o What is an architecture?




What is an architecture?

o A software architecture is the structure or
structures of a system, which comprise elements,
their externally-visible properties, and the
relationships among them

o But what kinds of structure?
n modules: showing composition/decomposition
n runtime: components at runtime
n allocation: how software is deployed
n

o Each is the basis of an Architectural View

Component-and-Connector (C&C) View

o Decomposition of system into components...
n Components: principal units of run-time
computation and data stores
o Examples: client, server
n Typically hierarchical
o And connectors...
n Connectors: define an abstraction of the
interactions between components
o Examples: procedure call, pipe, event announce
o Using architectural styles...
n Guide composition of components and connectors

o And constraints (or invariants)

’ [
capitalize °
4

Example:
CaPiTalLize

o Pipe-and-Filter System
n data source component (source)
n a data sink component (sink)
n a filter component (capitalize)
n two connectors (character pipes)
o Component capitalize
n Receives ASCII characters from source

n Converts characters alternatively to upper or lower

case
n Sends characters on to component sink

Example: CaPiTalLiZe (continued)

o Further decomposed into a sub-architecture
consisting of another pipe-and-filter system

capitalize

C&C Components

o Components have one or more interfaces
(“ports”)
o Each interface:

n provides a set of services that other components

may use

n requires (or uses) a set of services that other
components must provide

Plnput  »Output

C&C Connectors

o Show pathways of communication

o Represent interactions between components
n Example: method calls
n Example: SQL connection

o The interface of a connector is defined as a set
of roles (think of it as the “protocol”)

Pipe

o — () e

sink source




Unix Pipe-and-Filter Systems

cat /etc/passwd | grep “joe” | sort > junk

"{ cat | grep |—{ sort |-

How Does a Software Architecture
Help?

o Understanding
n Vocabulary for structure, system constraints
o Construction
n - What behavior must be built-in before actually having
running code
o Design Reuse
n Reuse of styles and selection among alternatives
o Evolution (allowable envelope of change)
n Limits of scalability and adaptation
o Analysis
n System-level analysis that exploits structural constraints
n Performance, reliability, security, fault-tolerance, ...

Architectural Styles or Families

o Describe sets of related N
arChiteCtureS PInput POutput NWes

n Vocabulary (types) of
components, connectors, ...

n Topological constraints that |

all members of the family i

must satisfy D@ o

o Usefulfor

n Style-based analyses E);S]L
n Checking conformance to a E

style

15

How many Architectural Styles?

o Understand Pure Styles
n Overall organizational patterns
o Understand specializations and examples
n  What are some examples and common variants?
0 Pure styles are rarely found in practice
n Systems in practice deviate from the academic
definitions (for good reasons, hopefully!)
n Combine several architectural styles simultaneously
o What you need to know:
n Understand strengths and weaknesses
n Understand consequences or tradeoffs of deviating
from the style

Common Architectural Styles

Call-return Data Flow
Dataflow

Main program/subroutines Pipe-and-filter

Simple Client-server

Hierarchical Shared Data/Repository

N Tiered Databases
MESA Blackboard
Interacting processes

Implicit invocation (a.k.a.
Publish-Subscribe)

Call-Return Style Semantics

o Functional correctness is hierarchical
o Correctness of one component depends on the
correctness of the components on whose
services it relies
o Leads naturally to a pre/post-condition style of
specification
n Pre = conditions under which a service may
be requested
n Post = the result of having made a service
request




Main Program and Subroutines

o Hierarchical decomposition:
n Based on definition-use relationship
o Hierarchical reasoning:
n Correctness of a subroutine depends on the
correctness of the subroutines it calls
o Natural correspondence to code structures
n Code modules are viewed as the corresponding run-
time entities
0 Subsystem structure implicit:
n Subroutines typically aggregated into modules

Main Program/Subroutine Pattern

Main

o) GpdDo
1Y SO

Call/return

Data Abstraction or Object-
Oriented

Method call

Problems with Object Approaches

o Managing many objects

n Vast sea of objects requires additional structuring
o Distributed responsibility for behavior

n Makes system hard to understand

n Interaction diagrams now used in design
o Capturing families of related designs

n Types/classes are often not enough

n design patterns as an emerging off-shoot

Generalizing the Call-Return Style

o System Topology
n In general, no restriction (i.e., arbitrary graph)

o Special cases may restrict topology
n Client-server (Asymmetric)
o Clients can only talk to servers, not to each other
o Client knows about servers, but not vice versa
n Tiers (elaboration on client-server)
o Hierarchical virtual machines
o Aggregation into run-time layers

Simple Client-Server

o A client is a system that accesses a service
from the server

o A server carries out some task on behalf of a
client

o Various topologies
n Initially star, others emerged later

‘ Client }—‘ Server ‘—‘ Client ‘




Client/Server Semantics

o Servers do not know the identities or number of
clients that will access it at run time

o Clients know the identity of a server or can find
it from another server (that they know the
identity of)

o Clients and servers use (or agree) the same
protocols to communicate

Client/Server Tradeoffs

o General quality attributes promoted
n Scale
o0 easy to add more clients
o easy to add more data (provided the structure or
access services do not change)
o General quality attributes inhibited
n reliability?
n performance?
n security?
n higher complexity? (harder to test, harder to
maintain

Tiers

o Clients and Servers are organized into levels,
called tiers

o Each tier provides a set of services to the tiers
above it

o Each tier relies on services from the tiers
below it

o A tier encapsulates a set of services and the
lower-level implementations that it relies on.

n Often a lower tier acts as a “virtual machine” for the
tier above

Note: Tiered vs. Layered

o Layered
n Applies to module view (i.e., static source code
organization)
o Tiered
n Applies to C&C view (i.e., runtime view)
o It's important to not mix the two in the same
diagram
n More on this later

Hierarchical: Virtual Machine

Useful Systems

Basic Utility
\ \\
Core

|

LeveI/‘ | |
/ i
[

Usually
procedures

Composites of
various elements

Tiered Operating System

ATIMESHARING SYSTEM A BATCH SYSTEM




The 3-Tiered Client-Server

Generalized client-server
Further promotes scalability and modifiability
o Addresses some of the shortfalls

n performance, availability, security
Generally, a 3-tiered style has:

o o

o

\
n User Tier
n Logic Tier

n Data Tier

Variations on the 3-Tier Style

o Many variations in how much functionality you
put in each tier

various protocols1
Front end, or + - . Back end, or
front end Back end
processes.. . 4 processes..
i | —

i Middleware
Typically Browser Typically RDBMS

Eat-client * Thin. Client - Fat Server .- Thin Server

The n-Tier Architectural Style

o Responsibilities Web Service| [Presentati
e R H eb Service resentation
partitioned into tiers Consumer | | (browser)

o Now a standard way to
build a web application

n Presentation

Connectivity Web- Ptraet?grr:-
Web Service/Integration Service (server)

Business
Persistence/Data

5 5 5 3

Business Tier

T

Runtime View vs. Allocation View

Web Service| |Presentation
o Many ways to map Consumer (browser)

runtime components =

and connectors to —= Connectivi/@

hardware and network

topologies -
P weo- || R
Service (server)

Business Tier

e

Tiered Style Semantics

o Every component is assigned to exactly one
tier

o A component in a tier is allowed to require
services from components in {any lower, next
lower} tier

o A component in a tier {is, is not} allowed to
use services from components in same tier

Tiered Style Tradeoffs

o Advantages:
n Supports design based on increasing levels of abstraction

n Supports enhancement—changes of one layer affects at
most the one above & below

n Supports reuse, portability, ...

o Disadvantages:

n Can be difficult to determine which functionality should
go in which tier

n Performance considerations may require “tunneling”
through layers

n Can be quite difficult to find the right level of abstractions

n Computations may not fit smoothly into the layers




Tiered Style: Tunneling/Wormholes

Tiern

Tier j

\ Tier i

A S S N N SR

‘ Tier 1

Tiered Style Variations (many)

o Segmented Tiers
n Dividing a tier into segments, with allowed-to-use
relations between the segments within a tier and
segments between tiers

| ) | f
| )| 0
| 0| I

N Y Y A

Layered Style (cont'd.)

o What it’s for

n Portability

n Fielding subsets, incremental development

n Separation of concerns

o Variations (many)

n Segmented layers: Dividing a layer into
segments (or sub-modules), with allowed-
to-use relations between the segments
within a layer and segments between
layers.

Publish-Subscribe Style

o Components communicate

n Announcing events

n Registering for events of interest
o Loose coupling

n The correctness of a component does not depend on
the correctness of any components that receive
events it has announced.

n There may be 0, 1, or many receivers of an event
o Specialization
n Implicit Invocation: register procedures with events

40

Implicit Invocation

Explicit Invocation
e

opp Q‘/op3

Objects

Implicit Invocation

2N o

op3 Objects

a1

Implicit Invocation System

42




Event Considerations

o Event Declarations

n  Who should declare events and where?
o Event Structure

n How should events be parameterized?
o Event Bindings

n How/when should events be bound to procedures?
o Event Announcement

n How should events be announced and dispatched?
o Concurrency

n Can components operate concurrently?

43

Recap: Observer

o Applicability

n When an abstraction has two aspects,
one dependent on the other, and you
want to reuse each
When change to one object requires

El

ST
Oleurrar

changing others, and you don’t know
i ey irkuizon)

how many objects need to be
changed - ctec b
When an object should be able to [etid]

El

notify others without knowing who
they are
o Consequences
n Loose coupling between subject and
observer, enhancing reuse
n Support for broadcast communication

n Notification can lead to further
updates, causing a cascade effect

o
ConereteOkserver

I

44

Implementing Implicit Invocation

‘someCtiect tiect Observabi ’ chservert Observer

setcrangee)

J

|
|
|
ratyoesenverso 1 !
|
|
|

| _upateconservabie obiec)

-

T updote(Cbservebie Object)

clesrChangea)

cemeonsenersy 1

7

45

e e Y
J —

Implicit Invocation Tradeoffs

o Advantages:
n Strong support for reuse
n Ease of system evolution—components can be
replaced without affecting the interfaces of other
components
o Disadvantages:
n Components relinquish control over the computation
performed by the system
n Exchange of data sometimes relies on a shared
repository—performance & resource management
becomes a serious issue
n Reasoning about correctness can be problematic

46

Data Flow Styles

o A data flow system is one in which:

n the structure of the design is determined by the
motion of data from component to component

n the availability of data controls the computation
n the pattern of data flow is explicit
n this is the only form of communication between
components
o There are variety of variations on this theme:
n how control is exerted (e.g., push versus pull)
n degree of concurrency between processes
n incrementality of computation
n_topological restrictions (e.g., pipeline)

47

Data Flow Styles - Elements

o Components: Data Flow Components
n Interfaces are input ports and output ports
o Input ports read data; output ports write data
n Computational model: read data from input ports,
compute, write data to output ports
o Corollary: components do not know the identity of
upstream/downstream producers/consumers
o Connectors: Data Streams
n Unidirectional (usually asynchronous, buffered)
n Interfaces are reader and writer roles
n Computational model: transport data from writer
roles to reader roles

a8




Data Flow Styles — Elements

o Systems
n Arbitrary graphs
n Computational model: Availability of data controls

the computation

o Pick a component that has input and execute it

o Overall data transformation is the “functional
composition” of individual transformations

e R
h(g(f(s))

49

Control Flow vs. Data Flow

o Control Flow
n question is how locus of control moves through the
program or system
n data may follow control, but data is not the driving
force of the architecture
o Data Flow
n dominant question is how data moves through a
collection of computational units
n as data moves, control (and computation) is
activated
n Important note: Data Flow architectural styles are
NOT the same as data flow diagrams of traditional
structured analysis

50

Specific Data Flow Styles

o Batch sequential
n sequential processing steps, run to completion
n typical of early MIS applications
o Pipe-and-filter
n incremental transformation of streams
n typified by Unix
o Process control
n looping structure to control environment variables

Pipes and Filters

o Components: Filters
n Incrementally transform some of the source data
to sink data
n Stream-to-stream transformations
n Preserve no state between instantiations
o Connectors: Pipes
n Move data from a filter output to a filter input
n One-way, order-preserving, data-preserving
n Pipes form data transmission graphs
o Overall Operation
n Run pipes and filters (non-deterministically) until
no more computations are possible.

Pipe-and-Filter: More on Filters

o Stream-to-stream transformations
n enrich data by computation and adding information
n refine by distilling data or removing irrelevant data
n transform data by changing its representation

o Incrementalility
n data processed as it arrives, not gathered then
processed
o Independent entities
n no external context in processing streams
n no state preservation between instantiations
n  no knowledge of upstream/downstream filters
n the correctness of the output should not depend upon
er

network, although topology matters =

Pipe-and-Filter: More on Pipes

o Pipes move data from a filter output to a filter
input (or to a device or file)
n data moves in one direction
n pipes form data transmission graphs
n logically infinitely buffered (in practice usually
finitely buffered with flow control, i.e., blocking)
o Overall Operation
n “do the plumbing”
n system action is mediated by data delivery




Unix Pipes and Filters

o Filters: Unix processes
n Built-in ports: “stdin” “stdout” “stderr”
n Filters usually transform “stdin” to “stdout”
o Pipes: Buffered streams supported by OS
n Unix pipes can treat files as well as filters as data
sources and sinks, but files are passive
n Unix assumes that the pipes carry ASCII
character streams
o the good news: anything can connect to anything
o the bad news: everything must be encoded in
ASCII, then shipped, then decoded

Pipes versus Procedures

Pipes Procedures
Arity Binary Binary
Asynchronous, Synchronous,
Control data-driven blocking
Semantics Functional Hierarchical
Parameter/
Data Streamed return value
Binding time,
Variations Buffering, end- exception
of-file behavior handiing,
polymorphism

Pipe-and-Filter Style Tradeoffs

o Advantages:
n Overall input/output behavior is a simple composition of the
behavior of individual filters
n Support reuse
n Easily maintained and enhanced
n Permit certain kinds of specialized analysis, e.g.,
throughput, deadlock analysis
n  Naturally support concurrent executions
o Disadvantages
n Often lead to batch organization of processing
n Awkward for handling interactive applications
n May be hampered by having to maintain correspondences
between two separate, but related streams
n  May force a lowest common denominator on data
transmission, depending on implementation
o Loss of performance

Module “interface” vs. C&C View
Component “interface”

o Consider a filter, F, with two outputs, both of
which write characters to a pipe

n Viewed as a Module both outputs would have the
same interface

n Viewed as a Component the outputs would be
different ports, even though their “signatures” are
different

<<Interface>>
Output

Mixing Architectural Styles

o Styles are often used in combination
Example:
n Each tier could be defined internally in a different style

n Each component could have a decomposition in a
different style

Tiered and Client-Server

Client Tier [ u B B

Client-Server ><

Logic Tier C}QODOQOOO

S s sisis s

10



Combining Pipe-Filter
with Shared Data with Bridge

Questions?

Bridging
Element

Database

11



