
1

Design Patterns

15-413: Introduction to Software Engineering

Jonathan Aldrich

17 October 2005

Design Patterns

• "Each pattern describes a problem 
which occurs over and over again in our 
environment, and then describes the 
core of the solution to that problem, in 
such a way that you can use this 
solution a million times over, without 
ever doing it the same way twice”
– Christopher Alexander

17 October 2005

History

• Christopher Alexander, The Timeless 
Way of Building (and other books
• Proposes patterns as a way of capturing 

design knowledge in architecture
• Each pattern represents a tried-and-true 

solution to a design problem
• Typically an engineering compromise that 

resolves conflicting forces in an 
advantageous way

17 October 2005

Patterns in Physical Architecture

• When a room has a window with a view, the window 
becomes a focal point: people are attracted to the 
window and want to look through it. The furniture in 
the room creates a second focal point: everyone is 
attracted toward whatever point the furniture aims 
them at (usually the center of the room or a TV). This 
makes people feel uncomfortable. They want to look 
out the window, and toward the other focus at the 
same time. If you rearrange the furniture, so that its 
focal point becomes the window, then everyone will 
suddenly notice that the room is much more 
“comfortable”. 
– Leonard Budney, Amazon.com review of The 
Timeless Way of Building

17 October 2005

Benefits of Patterns

• Shared language of design
• Increases communication bandwidth
• Decreases misunderstandings

• Learn from experience
• Becoming a good designer is hard

• Understanding good designs is a first step
• Tested solutions to common problems

• Where is the solution applicable?
• What are the tradeoffs?

17 October 2005

Elements of a Pattern

• Name
• Important because it becomes part of a design vocabulary
• Raises level of communication

• Problem
• When the pattern is applicable

• Solution
• Design elements and their relationships
• Abstract: must be specialized

• Consequences
• Tradeoffs of applying the pattern

• Each pattern has costs as well as benefits
• Issues include flexibility, extensibility, etc.
• There may be variations in the pattern with different 

consequences



2

17 October 2005

Worth Buying (and no, I don’t get a kickback ;-)

• Brought Design 
Patterns into the 
mainstream

• Authors known as the 
Gang of Four (GoF)

• Focuses on 
descriptions of 
communicating objects 
and classes that are 
customized to solve a 
general design problem 
in a particular context

17 October 2005

Let’s look at some patterns

• Creational Patterns
• Structural Patterns
• Behavioral Patterns

17 October 2005

Behavioral: Visitor
• Applicability

• Structure with many classes
• Want to perform operations 

that depend on classes
• Set of classes is stable
• Want to define new 

operations
• Consequences

• Easy to add new operations
• Groups related behavior in 

Visitor
• Adding new elements is 

hard
• Visitor can store state
• Elements must expose 

interface

17 October 2005

Behavioral: Observer
• Applicability

• When an abstraction has two 
aspects, one dependent on the 
other, and you want to reuse 
each

• When change to one object 
requires changing others, and 
you don’t know how many 
objects need to be changed

• When an object should be able 
to notify others without knowing 
who they are

• Consequences
• Loose coupling between subject 

and observer, enhancing reuse
• Support for broadcast 

communication
• Notification can lead to further 

updates, causing a cascade 
effect

17 October 2005

Behavioral: Mediator
• Applicability

• A set of objects that 
communicate in well-defined but 
complex ways

• Reusing an object is difficult 
because it communicates with 
others

• A behavior distributed between 
several classes should be 
customizable without a lot of 
subclassing

• Consequences
• Avoids excessive subclassing to 

customize behavior
• Decouples colleagues, 

enhancing reuse
• Simplifies object protocols: 

many-to-many to one-to-many
• Abstracts how objects cooperate 

into the mediator
• Centralizes control

• Danger of mediator monolith

17 October 2005

Behavioral: Template Method
• Applicability

• When an algorithm consists of 
varying and invariant parts that 
must be customized

• When common behavior in 
subclasses should be factored 
and localized to avoid code 
duplication

• To control subclass extensions 
to specific operations

• Consequences
• Code reuse
• Inverted “Hollywood” control: 

don’t call us, we’ll call you
• Ensures the invariant parts of 

the algorithm are not changed by 
subclasses



3

17 October 2005

Creational: Abstract factory
• Applicability

• System should be 
independent of product 
creation

• Want to configure with 
multiple families of products

• Want to ensure that a 
product family is used 
together

• Consequences
• Isolates concrete classes
• Makes it easy to change 

product families
• Helps ensure consistent 

use of family
• Hard to support new kinds 

of products

17 October 2005

Creational: Factory Method

• Applicability
• A class can’t anticipate 

the class of objects it 
must create

• A class wants its 
subclasses to specify the 
objects it creates

• Consequences
• Provides hooks for 

subclasses to 
customize creation 
behavior

• Connects parallel 
class hierarchies

17 October 2005

Creational: Singleton
• Applicability

• There must be exactly one 
instance of a class

• When it must be accessible to 
clients from a well-known place

• When the sole instance should 
be extensible by subclassing, 
with unmodified clients using the 
subclass

• Consequences
• Controlled access to sole 

instance
• Reduced name space (vs. global 

variables)
• Can be refined in subclass or 

changed to allow multiple 
instances

• More flexible than class 
operations

• Can change later if you need to

• Implementation
• Constructor is protected
• Instance variable is private
• Public operation returns 

singleton
• May lazily create singleton

• Subclassing
• Instance() method can look up 

subclass to create in 
environment

17 October 2005

Announcements

• Iteration 2 plan due today
• Next homework out this afternoon; due next 

Friday

• Course workload
• 6-7 hours: 6 students
• 8-9 hours: 10 students
• 12-14 hours: 2 students

17 October 2005

Structural: Facade
• Applicability

• You want to provide a simple 
interface to a complex 
subsystem

• You want to decouple clients 
from the implementation of a 
subsystem

• You want to layer your 
subsystems

• Consequences
• It shields clients from the 

complexity of the subsystem, 
making it easier to use

• Decouples the subsystem and 
its clients, making each easier to 
change

• Clients that need to can still 
access subsystem classes

17 October 2005

Structural: Adapter
• Applicability

• You want to use an existing 
class, and its interface does not 
match the one you need

• You want to create a reusable 
class that cooperates with 
unrelated classes that don’t 
necessarily have compatible 
interfaces

• You need to use several 
subclasses, but it’s impractical to 
adapt their interface by 
subclassing each one

• Consequences
• Exposes the functionality of an 

object in another form
• Unifies the interfaces of multiple 

incompatible adaptee objects
• Lets a single adapter work with 

multiple adaptees in a hierarchy



4

17 October 2005

Structural: Proxy
• Applicability

• Whenever you need a more 
sophisticated object 
reference than a simple 
pointer
• Local representative for a 

remote object
• Create or load expensive 

object on demand
• Control access to an object
• Reference count an object

• Consequences
• Introduces a level of 

indirection
• Hides distribution from client
• Hides optimizations from client
• Adds housekeeping tasks

17 October 2005

Structural: Decorator
• Applicability

• To add responsibilities to 
individual objects 
dynamically and 
transparently

• For responsibilities that 
can be withdrawn

• When extension by 
subclassing is impractical

• Consequences
• More flexible than static 

inheritance
• Avoids monolithic 

classes
• Breaks object identity
• Lots of little objects

17 October 2005

Structural: Composite
• Applicability

• You want to represent part-
whole hierarchies of objects

• You want to be able to ignore 
the difference between 
compositions of objects and 
individual objects

• Consequences
• Makes the client simple, since it 

can treat objects and composites 
uniformly

• Makes it easy to add new kinds 
of components

• Can make the design overly 
general

• Operations may not make sense on 
every class

• Composites may contain only 
certain components

17 October 2005

Behavioral: Command
• Applicability

• Parameterize objects by an 
action to perform

• Specify, queue and execute 
requests at different times

• Support undo
• Support logging changes that 

can be reapplied after a crash
• Structure a system around high-

level operations built out of 
primitives

• Consequences
• Decouples the object that 

invokes the operation from the 
one that performs it

• Since commands are objects 
they can be explicitly 
manipulated

• Can group commands into 
composite commands

• Easy to add new commands 
without changing existing code

17 October 2005

Other GoF Patterns
• Creational

• Builder – separate creation from representation
• Prototype – create objects by copying

• Structural
• Bridge – decouple abstraction from implementation
• Flyweight – use sharing for fine-grained objects

• Behavioral
• Chain of Responsibility – sequence of objects can respond to 

a request
• Interpreter – canonical implementation technique
• Memento – externalize/restore an object’s state
• State – allow object to alter behavior when state changes
• Strategy – encapsulate algorithm as object


