
1

Overview of Design

15-413:
Introduction to Software Engineering

Jonathan Aldrich

Some ideas from David Notkin’s CSE 
503 class

17 October 2005

Announcements

• Iteration 1 report due Monday

• Assignment 6 posted
• Build 3-4 requirements models
• Due Wednesday

• Iteration 2 plan due Friday

17 October 2005

Announcements

• Stories and Tasks
• To get a story to work may require several 
conceptual underlying tasks
• Build a framework, write a UI, …

• Can be useful to divide each story into tasks
• Stories are for planning, tasks for implementation
• Story should be completely done in an iteration; but 
different tasks can be done by different people

• Testing UIs
• HttpUnit may be useful (Team 5)
• UI with code underneath
• Design hooks that allow you to drive the app without 
the UI for testing

• Pure UI
• Write a script for exercizing the UI
• Execute the script by hand
• Run every iteration & whenever relevant code 
changes

17 October 2005

Announcements

• Testing Legacy Code
• If you are changing or enhancing legacy 
code, write unit tests for the portion that 
you are going to change

• Functional Tests
• Need one or more for each story
• Written before the story is implemented

• Automated if possible
• Use manual script if not

• Will ask for these in next project review

17 October 2005

Software Complexity

• Software entities are more complex 
for their size than perhaps any other 
human construct, because no two 
parts are alike (at least above the 
statement level). If they are, we 
make the two similar parts into 
one…In this respect software systems 
differ profoundly from computers, 
buildings, or automobiles, where 
repeated elements abound.”
—Brooks, 1986

17 October 2005

Benefits of Decomposition

• Easier to manage

• Modularity – solve a problem and use 
in other places

• Facilitates testing

• Easier to understand context & 
functionality of small parts

• Design is easier because problem is 
smaller

• Delegation / division of work



2

17 October 2005

Benefits of Decomposition

• Smaller problem size

• Understanding

• Verification

• Reuse

• Evolvability

• Fault isolation

• Independent development

17 October 2005

Criteria for Decomposition

• Look for common reusable 
components

• Maximize independence between 
modules – can alter parts 
independently, testing, etc.

• Each part solves one part of the 
problem – correspondence between 
problem & solution

• Performance

17 October 2005

Criteria for Decomposition

• Conceptual integrity

• Reusable parts

• Performance

• Hide information likely to change

• Real world: need a balance of these

17 October 2005

Software Change

• …accept the fact of change as a way of life, 
rather than an untoward and annoying 
exception.
—Brooks, 1974

• Software that does not change becomes 
useless over time.
—Belady and Lehman

• For successful software projects, most of 
the cost is spent evolving the system, not 
in initial development
• Therefore, reducing the cost of change is one of 
the most important principles of software design

17 October 2005

Information Hiding
Derived from definition by Edward Berard

• Decide what design decisions are likely to change 
and which are likely to be stable

• Put each design decision likely to change into a 
module

• Assign each module an interface that hides the 
decision likely to change, and exposes only stable 
design decisions

• Ensure that the clients of a module depend only on 
the stable interface, not the implementation

• Benefit: if you correctly predict what may change, 
and hide information properly, then each change 
will only affect one module
• That’s a big if…do you believe it?

17 October 2005

Abstraction
Derived from definition by Edward Berard

• Noun: A representation of some object that 
focuses on more important information and 
leaving out less important information
• The details (less important information) may be 
specified separately from the abstraction

• Verb: To come up with such an abstraction

• Distinct from information hiding
• You’re leaving out “less important” information, 
vs. information likely to change



3

17 October 2005

Encapsulation
Derived from definition by Edward Berard

• Noun: a package or enclosure that holds one or 
more items

• Verb: to enclose one or more items in a container

• SE: a language mechanism for ensuring that clients 
of a module do not depend on its implementation
• e.g. Java’s public/private

• A matter of degree
• C: must define structs used by clients
• Java: hides all syntactic dependences
• But semantic dependencies may remain

• Could I hide information in a language without 
encapsulation mechanisms?

17 October 2005

Hiding design decisions

Decision Mechanism

• Data representation ADT/class

• I/O or comm proto prototcol library

• GUI GUI interface

• Algorithm function

17 October 2005

Hiding design decisions

• Algorithms – procedure

• Data representation – abstract data type

• Platform – virtual machine, hardware 
abstraction layer

• Input/output data format – I/O library

• User interface – model-view pattern

17 October 2005

What is an Interface?

• Function signatures?
• Performance?

• Ordering of function calls?

• Resource use?

• Locking policies?

• Conceptually, an interface is 
everything clients are allowed to 
depend on
• May not be expressible in your favorite 
programming language

17 October 2005

Does an object-oriented design 
mean information hiding?

17 October 2005

Does an object-oriented design 
mean information hiding?

• Objects hide data representation and 
the implementation of data 
operations
• Assuming that fields are private and 
internal data structures stay internal

• Data representation is often likely to 
change—but other things can change 
as well!

• Need to think explicitly about what 
may change in order to hide it 
effectively



4

17 October 2005

Cohesion

• The number of dependences within a 
module

• High cohesion is good
• Changes are likely to be local to a 
module

• Easier to understand a module in 
isolation

17 October 2005

Coupling

• The number of dependences between 
modules

• High coupling causes problems
• Change propagation
• Difficulty understanding
• Difficult reuse

• Coupling increases over time
• I need to use that function over there…

17 October 2005

Correspondence

• How well the design of the code matches the 
requirements

• If each requirement is implemented by a separate 
module, then a change in a requirement should 
only require changes to one module
• Hard to achieve in practice
• OO approaches design code after a model of the 
world
• This helps, but some requirements crosscut the 
structure of the world as well!

• Separation of Concerns
• Generalizes correspondence to “concerns” that may 
be implementation issues, not just requirements

17 October 2005

Information Hiding Premises

• We can effectively anticipate changes

• Changing an implementation is the 
best change, since its isolated

• The semantics of a module must 
remain unchanged when its 
implementation is replaced

• One implementation can satisfy 
multiple clients

• Are these always true?


