
1

Course Overview

15-413: Introduction to Software 
Engineering

Jonathan Aldrich

29 August 2005

How is SE in industry different from 
coding assignments?

• Student comments
• Boss has no idea what he wants
• Spend more time on testing than you 

ever dreamed
• Have to maintain code 

weeks/months/years
• Adapt your code to bigger infrastructure
• Unsure what correct output
• Documentation requirements more 

rigorous

29 August 2005

How is SE in industry different from 
coding assignments?

• Some of my answers:
• Requirements ambiguous
• Requirements change during 

development
• Scale is larger

• Requires different design skills
• Requires teamwork

• Software must be changed after 
development is complete

• Failure is more expensive
• Business-critical
• Safety-critical

29 August 2005

Assignment 1

• Read a software engineering case 
study
• Several options, from SE Ph.D. students’

experiences

• Write your reaction to the study
• What did you find surprising?
• Was there anything you could relate to 

your own experience?
• 1 page (at least 500 words)

• Due Friday

29 August 2005

What is Software Engineering?

• Involves whole development cycle

• Implementation of a process that 
guarantees good results

• Break down problems and solve them
• Test, revise and try
• Design, create, test, iterate
• Design for errors & compensate

29 August 2005

What is Software Engineering?

• One definition (Mary Shaw)

Software Engineering is
• the branch of computer science
• that creates practical, cost-effective 

solutions to computing and information 
processing problems,

• preferentially by applying scientific 
knowledge

• developing software systems in the 
service of mankind.



2

29 August 2005

How does Software differ
from other engineering disciplines?

• Student comments
• Newer discipline
• Easier to revisions
• Innovation/pace of change
• Not physical – more ways it can break

• Laws underneath are more complex
• Can have many purposes, and can 

change
• Not as much time spent testing

• Not required to be as robust
• Management difficult because hard to 

measure quality/intangible

29 August 2005

How does Software differ
from other engineering disciplines?

• Some of my answers:
• Software is designed, not manufactured

• Production cost is paid up front
• Little re-use achieved in practice

• Software is based on discrete math
• Butterfly effect: small errors can have 
big consequences

• Overengineering does not work well
• Software is malleable

• Can apply to huge variety of problems
• Software doesn’t wear out

• All problems are “designed in”

29 August 2005

Course Goals

• You will leave the course:
• Understanding the role of software in 
systems
• How software differs from other engineering 

materials

29 August 2005

Course Goals

• You will leave the course:
• Understanding the role of software in systems
• Understanding why SE practices are 
important
• Reading and analyzing historical SE failures
• Being exposed to situations that require good 

SE practices
• Using SE practices enough to see value in them
• Reflecting on influence of SE practices in course 

project

29 August 2005

Course Goals

• You will leave the course:
• Understanding the role of software in 

systems
• Understanding why SE practices are 

important
• Knowing good basic SE practices

• Software process and project 
management techniques

• Requirements elicitation
• Design and Architecture techniques
• Coding best practices
• Testing and analysis of code

29 August 2005

Course Goals

• You will leave the course:
• Understanding the role of software in 

systems
• Understanding why SE practices are 

important
• Knowing good basic SE practices
• Able to make simple engineering 
tradeoffs
• Exposure to multiple techniques with 
benefits/drawbacks

• Making decisions in practice and 
reflecting on consequences

• Evaluation of tradeoffs in historical SE 
projects and in peer class projects



3

29 August 2005

Course Goals

• You will leave the course:
• Understanding the role of software in 

systems
• Understanding why SE practices are 

important
• Knowing good basic SE practices
• Able to make simple engineering 

tradeoffs
• Possessing basic skills using SE tools 
and practices
• Exposure to tools: Debuggers, version 
control, configuration management, unit 
tests, modeling tools, analysis tools

• Skills for working within frameworks 
and large systems

• Ability to carry out basic software life-

29 August 2005

Course Goals

• You will leave the course:
• Understanding the role of software in 

systems
• Understanding why SE practices are 

important
• Knowing good basic SE practices
• Able to make simple engineering 

tradeoffs
• Possessing basic skills using SE tools and 

practices
• Having applied those skills in a 
structured setting with realistic 
challenges
• CMU philosophy: include application as 
well as fundamentals

• Structured to focus on SE content

29 August 2005

Course Emphasis

• Technical content
• Design
• Analysis
• Quality assurance

• Management
• Teamwork
• Working for clients
• Project Planning

• Experience
• Real project for a CMU client
• Homework exercises

29 August 2005

Project

• Real, internal CMU client
• Provides interesting problem, realistic 

pressures, unclear/changing 
requirements, etc.

• Lower overhead and pressure than 
external client

• Small, 3-4 member teams

• Emphasis on good SE practices
• Homeworks and deliverables tied to 

project
• Grading: practices more important than 

end result

29 August 2005

Evaluation

• Homework

• Project deliverables

• Class presentations

• Client assessment

• 360-degree peer evaluations
• You will evaluate your team members 

and yourself

29 August 2005

Textbook

• Optional text
• Roger S. Pressman, Software 

Engineering, A Practitioner’s Approach

• Readings from the literature

• Other resources
• Brooks, Mythical Man-Month
• Sommerville, Software Engineering
• Glass, Software Runaways
• Design Patterns



4

29 August 2005

Course Outline

• Weeks 1-3: Process, Planning, Estimation, 
Risk Management

• Week 4: Requirements

• Week 5: Architecture

• Weeks 6-7: Design
• Week 8: Formal Methods

• Week 9: Coding

• Week 10-11: Quality Assurance

• Week 12: Analysis

• Week 13: Responsibilities of an Engineer
• Week 14: Software Evolution

• Week 15: process improvement, wrapup

29 August 2005

Project Outline

• Week 1: Form teams & bid for project

• Weeks 2-3: Planning, Requirements

• Weeks 4-6: Requirements, Prototyping

• Week 7: Architecture

• Week 8: Design

• Week 9-10: Formal modeling assignment

• Week 11: Test Plan

• Week 12: Code review assignment

• Week 13-14: Analysis assignment

• Week 15/Finals: Final Report

29 August 2005

A reminder on plagiarism

• Do not copy material (code, 
homework) without attribution
• Plagiarism is cheating; the minimum 

penalty will be a zero for the assignment

• Your work should be your own

• If you have any questions, ask the 
instructor or a TA

29 August 2005

Questions?


