
Technical Report
CMU/SEI-93-TR-6
ESC-TR-93-183

Taxonomy-Based Risk Identification

Marvin J. Carr
Suresh L. Konda

Ira Monarch
F. Carol Ulrich

Clay F. Walker

 June 1993

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-93-TR-6

ESC-TR-93-183
June 1993

Taxonomy-Based Risk Identification

Marvin J. Carr

Suresh L. Konda

Ira Monarch

F. Carol Ulrich

Taxonomy Project

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1993 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Suite C201, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-93-TR-6

ESC-TR-93-183
June 1993

Taxonomy-Based Risk Identification

Marvin J. Carr
Suresh L. Konda

Ira Monarch
F. Carol Ulrich

Risk Taxonomy Project

and

Clay F. Walker
Resident Affiliate,

Computer Sciences Corporation

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1993 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Document Discrepancy Report (DDR)

ge
nts
are
Please use this form to submit your comments on this document (CMU/SEI-93-TR-6). Indicate the pa
number, section number, and paragraph to which your comment pertains. You may send your comme
electronically as ASCII text, but please use this format. Send your comments to: Risk Program, Softw
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213 or E-mail, drb@sei.cmu.edu

Date Submitted: Date Responded: Control No.:

Document Name & No.:

Your Name: Phone:

Company: FAX:

Address:

City: State: Zip:

Descrepancy: Page Paragraph

Proposed Change:

Disposition (SEI Use Only):
CMU/SEI-93-TR-6

Document Discrepancy Report (DDR)
CMU/SEI-93-TR-6

CMU/SEI-93-TR-6 i

Table of Contents

1 Introduction 1

2 The Context 3

3 The Risk Identification Method 7
3.1 The Software Development Risk Taxonomy 8
3.2 The Taxonomy-Based Questionnaire (TBQ) 11
3.3 Field Testing the TBQ 12

4 Technical Approach 17
4.1 Taxonomy-Based Questionnaire Derivation 17
4.2 Evolutionary Development 17

5 Lessons Learned 19
5.1 The Method Is Effective and Efficient 19
5.2 Process Is Important 19
5.3 Facilitation Skills Can Be Transitioned 20

6 Conclusions 21

References 23

Appendix A Taxonomic Group Definitions A-1

Appendix B Taxonomy-Based Questionnaire B-1

Appendix C Glossary of Terms C-1

Index 1

ii CMU/SEI-93-TR-6

CMU/SEI-93-TR-6 iii

List of Figures

Figure 2-1 Risk Management Model 4
Figure 3-1 Software Development Risk Taxonomy 9
Figure 3-2 Sample Taxonomy-Based Question 12
Figure 3-3 Risk Identification Process 13

iv CMU/SEI-93-TR-6

Taxonomy-Based Risk Identification

Abstract: This report describes a method for facilitating the systematic and
repeatable identification of risks associated with the development of a
software-dependent project. This method, derived from published literature
and previous experience in developing software, was tested in active
government-funded defense and civilian software development projects for
both its usefulness and for improving the method itself. Results of the field tests
encouraged the claim that the described method is useful, usable, and efficient.
The report concludes with some macro-level lessons learned from the field
tests and a brief overview of future work in establishing risk management on a
firm footing in software development projects.

1 Introduction

The risk identification method presented here is the first step in a comprehensive and contin-
uous risk management method being developed by the SEI to enhance the probability of
project success. Subsequent technical reports will address the analysis, planning, tracking,
and control aspects of risk management while, throughout, addressing the issue of risk com-
munication.

The method is based upon the SEI taxonomy1 of software development risks. The taxonomy
provides a framework for organizing and studying the breadth of software development issues
and hence provides a structure for surfacing and organizing software development risks.

The method described in this report consists of the taxonomy-based questionnaire (TBQ) in-
strument and a process for its application. The taxonomy organizes software development
risks into 3 levels—class, element, and attribute. The TBQ consists of questions under each
taxonomic attribute designed to elicit the range of risks and concerns potentially affecting the
software product. The application process is designed such that the questionnaire can be
used in a practical and efficient manner consistent with the objective of surfacing project risks.
Both the TBQ and the application process have been developed using extensive expertise and
field tests under a variety of conditions.

This report is organized as follows. Chapter 2 provides the context for interpreting the method
and contains a brief background covering risk management in general and risk identification
in particular. Chapter 3 contains descriptions of the software development taxonomy, the TBQ
and its application in the context of field tests. Chapter 4 describes the technical approaches
used in developing the risk identification method. Chapter 5 consists of the lessons learned
from the use of the method. Chapter 6 concludes the report with some recommendations and

1. A taxonomy is a scheme that partitions a body of knowledge and defines the relationships among the pieces.
It is used for classifying and understanding the body of knowledge. See IEEE Software Engineering Standards
Collection, IEEE-STD-610.12, 1990.
CMU/SEI-93-TR-6 1

briefly outlines future work in risk identification in particular and risk management in general.
Finally, three appendices contain definitions of the software development taxonomy groups,
the TBQ, and a glossary of terms.
2 CMU/SEI-93-TR-6

2 The Context

The perspective taken in this work is that risks are inherent in any software development ac-
tivity. Furthermore, risk taking is essential to progress, and failure is often a key part of learn-
ing. On the other hand, the inevitability of risks does not imply the inability to recognize and
manage risks to minimize potential negative consequences while retaining the opportunities
for creating new and better software.

Our work with both government and industry indicates only isolated cases of software risk
management. Existing approaches to risk management tend to be ad hoc, undocumented, in-
complete, and dependent on the experience and risk orientation of key project personnel. Fur-
thermore, communication of software development risk is poor, incomplete, or even non-
existent. There are several reasons for this lack of communication, the most prevalent being
reluctance on the part of customers, developers, management, and software personnel to ac-
cept that risk is neither bad nor good, but is always present, and can be effectively dealt with
to increase the probability of project success. The very term, risk, often has negative conno-
tations and the consequent cultural pressure to deny its existence thus exposing the project
to unwanted surprises leading to difficulties and failures.2

On the positive side, most project risks are usually known by project personnel (though they
might not use the term risk to describe them) and as a consequence can be surfaced and man-
aged. Often project personnel experience risk as an uneasy feeling, a concern, or a doubt
about some aspect of the software they are developing. However, because of communication
problems described above, these risks are not brought to the attention of project management.

The SEI Risk Program is predicated on the assumption that a disciplined and systematic meth-
od of managing software development risk is necessary and feasible to control the quality,
cost, and schedule of software products. Our approach, based on a stylized model of manage-
ment problem solving, addresses the full range of activities to effectively manage software de-
velopment risks and consists of methods, such as the one described in this report, suitable to
each activity. This admittedly long-term effort will build upon, where feasible, the “good” prac-
tices of industry, academe, and experts. The SEI will develop methods to supplement and in-
tegrate existing capabilities.

The SEI risk management paradigm (see Figure 2-1) shows the different activities composing
software development risk management. The paradigm is represented as a circle to empha-
size that risk management is a continuous process while the arrows show the logical and tem-
poral flow of information between the activities in risk management. Communication is placed
in the center of the paradigm because it is both the conduit through which all information flows
and, often, is the major obstacle to risk management. In essence, the paradigm is a framework

2. See Kirkpatrick, R. J.; Walker, J. A.; & Firth, R. “Software Development Risk Management: An SEI Appraisal,”
SEI Technical Review, 1992.
CMU/SEI-93-TR-6 3

for software risk management. From this framework, a project may structure a risk manage-
ment practice best fitting into its project management structure. A brief summary of each risk
management paradigm activity follows.

Identify . Before risks can be managed, they must be identified. Identification
surfaces risks before they become problems and adversely affect a project.
The SEI has developed techniques for surfacing risks by the application of a
disciplined and systematic process that encourages project personnel to
raise concerns and issues for subsequent analysis. One such technique, the
taxonomy-based questionnaire, is described in subsequent chapters of this
report.

Analyze . Analysis is the conversion of risk data into risk decision-making
information. Analysis provides the basis for the project manager to work on
the “right” risks.

Plan . Planning turns risk information into decisions and actions (both present
and future). Planning involves developing actions to address individual risks,
prioritizing risk actions, and creating an integrated risk management
plan.The plan for a specific risk could take many forms. For example:

• Mitigate the impact of the risk by developing a contingency plan (along
with an identified triggering event) should the risk occur.

• Avoid a risk by changing the product design or the development process.

• Accept the risk and take no further action, thus accepting the
consequences if the risk occurs.

• Study the risk further to acquire more information and better determine
the characteristics of the risk to enable decision making.

The key to risk action planning is to consider the future consequences of a
decision made today.

Figure 2-1 Risk Management Model
4 CMU/SEI-93-TR-6

Track . Tracking consists of monitoring the status of risks and actions taken
to ameliorate risks. Appropriate risk metrics are identified and monitored to
enable the evaluation of the status of risks themselves and of risk mitigation
plans. Tracking serves as the “watch dog” function of management.

Control . Risk control corrects for deviations from planned risk actions. Once
risk metrics and triggering events have been chosen, there is nothing unique
about risk control. Rather, risk control melds into project management and
relies on project management processes to control risk action plans, correct
for variations from plans, respond to triggering events, and improve risk
management processes.

Communicate . Risk communication lies at the center of the model to
emphasize both its pervasiveness and its criticality. Without effective
communication, no risk management approach can be viable. While
communication facilitates interaction among the elements of the model, there
are higher level communications to consider as well. To be analyzed and
managed correctly, risks must be communicated to and between the
appropriate organizational levels and entities. This includes levels within the
development project and organization, within the customer organization, and
most especially, across that threshold between the developer, the customer,
and, where different, the user. Because communication is pervasive, our
approach is to address it as integral to every risk management activity and
not as something performed outside of, and as a supplement to, other
activities.

The remainder of this report focuses on risk identification and is based on the simple premise
that without effective and repeatable risk identification methods, truly effective risk manage-
ment is impossible; i.e., you can’t manage what you don’t know about. In keeping with this ap-
proach, the described identification method also begins to address the communication issue
central to risk management.
CMU/SEI-93-TR-6 5

6 CMU/SEI-93-TR-6

3 The Risk Identification Method

The risks in a software development project can be known, unknown, or unknowable. Known
risks are those that one or more project personnel are aware of—if not explicitly as risks, at
least as concerns. The unknown risks are those that would be surfaced (i.e., become known)
if project personnel were given the right opportunity, cues, and information. The unknowable
risks are those that, even in principle, none could foresee. Hence these risks, while potentially
critical to project success, are beyond the purview of any risk identification method.

Of the known risks some may already have been communicated to project management. The
focus of the risk identification method described here is on risks that are known whether or not
they have yet been communicated to project management, and on unknown risks.

The risk identification method achieves the desired focus through the interdependence of the
TBQ instrument, and its application process. That is, the use of the one without the other
would, in general, fail to reach the desired goals of surfacing and communicating risks to
project management.

The SEI risk identification method is based on the following assumptions:

• Software development risks are generally known by the project’s technical
staff but are poorly communicated.

• A structured and repeatable method of risk identification is necessary for
consistent risk management.

• Effective risk identification must cover all key development and support areas
of the project.

• The risk identification process must create and sustain a non-judgmental and
non-attributive risk elicitation environment so that tentative or controversial
views are heard.

• No overall judgment can be made about the success or failure of a project
based solely on the number or nature of risks uncovered.

The SEI taxonomy of software development maps the characteristics of software development
and hence of software development risks. The TBQ consists of a list of non-judgmental ques-
tions to elicit issues and concerns (i.e., potential risks) and risks in each taxonomic group.
Hence, the questionnaire ensures that all risk areas are systematically addressed, while the
application process is designed to ensure that the questions are asked of the right people and
in the right manner to produce optimum results.

The method described in this report presents a disciplined and systematic way to identify risk
in a software-dependent system development. This method allows risks to be identified with-
out justification and without a proposed solution. We believe this is the first step in establishing
vital communication within an organization.
CMU/SEI-93-TR-6 7

The TBQ application is semi-structured. The questions and their sequence are used as a de-
fining but not as a limiting instrument. That is, the questions are asked in a given sequence,
but the discussion is not restricted to that sequence. This is done to permit context- and cul-
ture-sensitive issues to arise in as “natural” a manner as possible. A completely structured in-
terview, while arguably yielding more reliable data for subsequent analysis across different
projects, may also yield less valid data.3 Since for us the pragmatics of risk management were
paramount, the semi-structured format was chosen. In effect, the TBQ method can be de-
scribed as a form of structured brainstorming.

The risk identification method surfaces and clarifies the uncertainties and concerns of a
project’s technical and managerial staff. They are close to the problems at their level and have
the experience and knowledge to recognize potential problems in technical, procedural, and
contractual areas.

3.1 The Software Development Risk Taxonomy

Central to the risk identification method is the software development taxonomy. The taxonomy
provides a framework for organizing and studying the breadth of software development issues.
Hence, it serves as the basis for eliciting and organizing the full breadth of software develop-
ment risks—both technical and non-technical. The taxonomy also provides a consistent
framework for the development of other risk management methods and activities.

The software taxonomy is organized into three major classes.

1. Product Engineering . The technical aspects of the work to be
accomplished.

2. Development Environment . The methods, procedures, and tools used to
produce the product.

3. Program Constraints . The contractual, organizational, and operational
factors within which the software is developed but which are generally outside
of the direct control of the local management.

These taxonomic classes are further divided into elements and each element is characterized
by its attributes.

Figure 3-1 contains a schematic of the taxonomy. The complete taxonomy, described from the
software development risk perspective, is contained in Appendix A where Figure A-1 shows
the detailed class-element-attribute structure of the taxonomy.

The next three subsections present a brief description of the software taxonomy to the class-
element level.

3. See Suchman, L.; & Jordan, B. “Interactional Troubles in Face-to-Face Survey Interviews.” Journal of the
American Statistical Association 85, 409 (1990): 232-253.
8 CMU/SEI-93-TR-6

C
M

U
/S

E
I-93-T

R
-6

9

nt Risk

Program
Constraints

Resources Program

hedule Facilities

• • •

• • •

t

F
igure 3-1 S

oftw
are D

evelopm
ent R

isk T
axonom

y

Interfaces
Software Developme

Development

Requirements
Engineering
Specialties

Class

StabilityAttribute

Environment
Product

Engineering

Element

Scale• • •

• • •

Sc

•

• • •Formality
Product

Work• •Development

Control

Process Environmen

3.1.1 Product Engineering Class
The product engineering class consists of the intellectual and physical activities required to
build the product to be delivered to the customer. It includes the complete system hardware,
software, and documentation. The class focuses on the work to be performed, and includes
the following elements:

• Requirements . The definition of what the software product is to do, the
needs it must meet, how it is to behave, and how it will be used. This element
also addresses the feasibility of developing the product and the scale of the
effort.

• Design . The translation of requirements into an effective design within
project and operational constraints.

• Code and Unit Test. The translation of software designs into code that
satisfies the requirements allocated to individual units.

• Integration and Test . The integration of units into a working system and the
validation that the software product performs as required.

• Engineering Specialities . Product requirements or development activities
that may need specialized expertise such as safety, security, and reliability.

3.1.2 Development Environment Class
The development environment class is concerned with the project environment in which a soft-
ware product is engineered. This environment consists of the following elements:

• Development Process . The definition, planning, documentation, suitability,
enforcement, and communication of the methods and procedures used to
develop the product.

• Development System . The tools and supporting equipment used in product
development, such as computer-aided software engineering (CASE) tools,
simulators, compilers, and host computer systems.

• Management Process . The planning, monitoring, and controlling of budgets
and schedules; controlling factors involved in defining, implementing, and
testing the product; the project manager’s experience in software
development, management, and the product domain; and the manager’s
expertise in dealing with external organizations including customers, senior
management, matrix management, and other contractors.

• Management Methods . The methods, tools, and supporting equipment that
will be used to manage and control the product development, such as
monitoring tools, personnel management, quality assurance, and
configuration management.

• Work Environment . The general environment within which the work will be
performed, including the attitudes of people and the levels of cooperation,
communication, and morale.
10 CMU/SEI-93-TR-6

3.1.3 Program Constraints Class
The program constraints class consists of the “externals” of the project—the factors that are
outside the direct control of the project but can still have major effects on its success. Program
constraints include the following elements:

• Resources . The external constraints imposed on schedule, staff, budget, or
facilities.

• Contract . The terms and conditions of the project contract.

• Program Interfaces . The external interfaces to customers, other
contractors, corporate management, and vendors.

3.2 The Taxonomy-Based Questionnaire (TBQ)

The TBQ consists of questions at the attribute level along with specific cues and follow-up
probe questions (the complete TBQ is reproduced in Appendix B). Because the TBQ is com-
prehensive, it contains questions that may not be relevant for all stages of a software devel-
opment life cycle, for specific software domains, or for specific project organizations. Typically,
the questionnaire is tailored to a particular project and its stage in the development life cycle
by deleting questions not relevant to it. For example, a project without any subcontractors
would have the subcontractor questions deleted.

To achieve clarity in the questions, many terms have been given specific definitions (see Ap-
pendix C). While these definitions are useful for understanding and using the instrument, they
remain general to make the TBQ applicable to a wide range of projects.

Figure 3-2 contains an excerpt from the TBQ from the product engineering class, the require-
ments element, and performance attribute. The bracketed statement provides the questioner
with a generalized context for the questions. Each “starter” question may have additional
probe questions based on the initial response. These probe questions are prefaced by a pa-
renthesized “Yes” or “No” indicating the type of initial response that activates the probe ques-
tion. For instance, if the answer to the starter question “Has a performance analysis been
done?” is “Yes,” then the probe questions “What is your level of confidence in the performance
analysis?” and “Do you have a model to track performance through design and implementa-
tion?” are asked.

Implicit in the TBQ is the probing of areas that contain issues, concerns, or risks. That is, the
interview protocol requires the interviewer to always follow up on responses that seem to in-
dicate a potential problem (as described in the next chapter). For instance, if the response to
question 23 were “No,” then the interviewer would probe for the issues, concerns, or risks to
the project due to lack of performance analysis.

Questions and probes may also have “cues” (bulleted lists) associated with them that list areas
that may be covered by the question. The cues are used after the participants have had the
opportunity to respond freely. For instance, in question 22 in Figure 3-2, the probe “Are there
CMU/SEI-93-TR-6 11

any problems with performance?” lists possible types of performance problems the software
might exhibit—problems with throughput, scheduling asynchronous real-time events, and so
forth.

3.3 Field Testing the TBQ

To validate the ability of the TBQ to elicit project risks, we tested the TBQ on a series of active
projects within various companies. The lessons learned from each field test were incorporated
into the next version of the TBQ to be tested again. This section describes the TBQ field test
process.

In determining the TBQ field test process, the aim was to balance the needs of a thorough risk
identification against the “costs” in terms of the time demands on both project personnel and
the risk identification team. The method described in this section evolved from several field
tests and represents our best understanding of how to use the TBQ under limited time con-
straints. The method described here is meant as a guide to organizations integrating TBQ risk
identification into their risk management process. Implications for TBQ application drawn from
information or experience obtained from these tests are presented in Chapter 5.

Figure 3-2 Sample Taxonomy-Based Question

A. Product Engineering

2. Design

d. Performance
[Are there stringent response time or throughput requirements?]

[22] Are there any problems with performance?

• Throughput
• Scheduling asynchronous real-time events
• Real-time response
• Recovery timelines
• Response time
• Database response, contention, or access

[23] Has a performance analysis been done?

(Yes) (23.a) What is your level of confidence in the performance
analysis?

(Yes) (23.b) Do you have a model to track performance through
design and implementation?
12 CMU/SEI-93-TR-6

The TBQ field test process consists of four distinct activities: management commitment, team
selection and training, risk identification, and identification conclusion. Figure 3-3 shows the
process used in the field tests. Each of the steps in the process is described in greater detail
below.

3.3.1 Management Commitment
Three activities need to take place before a field test can be conducted: executive commit-
ment, project selection, and participant selection.

3.3.1.1 Executive Commitment

Our experience in field testing the TBQ showed that a lack of serious acceptance of the ben-
efits of risk identification by project managers and their immediate superiors led to significant
delay or even cancelation of the identification. Hence, our first step was to present an execu-
tive briefing to obtain executive commitment. This briefing gave an overview of the process
with specifics as to personnel involved and cost to the project, as well as the benefits of con-
ducting a risk identification.

3.3.1.2 Project Selection

Once executive commitment was obtained, the next step was the selection of a project for the
field test. Two main criteria were found useful for selecting a project: that the project manager
saw a benefit in doing a risk identification, and that the project had significant software content.
Once a specific project was selected, it was found necessary that the client organization des-

Team Selection

Management

Identification

Figure 3-3 Risk Identification Process

and Training

Conclusion

Risk Interview
Session

Participant’s
Briefing

Risk Identification

Commitment
CMU/SEI-93-TR-6 13

ignate a site coordinator as the interface between the SEI identification team and the project
being reviewed. The site coordinator was given the field test logistics with respect to partici-
pants, meeting space, schedule, and support and was responsible for the overall coordination
of project personnel for the risk identification sessions.

3.3.1.3 Interview Participant Selection

The risk identification interview protocol requires an environment in which uncertainties, con-
cerns, issues, and risks can be raised without fear of attribution or the need for a solution. This
is essential so that critical risks, while possibly unavoidable, do not stay unarticulated because
of the risk avoidance culture of the organization.4 It was decided to achieve an environment
of non-attribution by having each interview group consist only of peers. That is, those partici-
pating in a given interview were chosen such that there are no reporting relationships among
them.

For a comprehensive risk identification it was also important to select participants who provid-
ed adequate vertical and horizontal project coverage. Vertical coverage refers to the project’s
organizational hierarchy, while horizontal coverage refers to the functional groups within or rel-
evant to the project. Combining the need for adequate coverage and the pragmatic constraints
of a field test, we found four interviews to be optimum. The four groups were technical leads,
developers, support functions (SQA, Test, Integration, and so on), and project management.
The project management group may be the project manager alone or, at his/her request, may
include the chief technical or operations manager. In practice, the specific characteristics of
the software project in question should guide the actual number of interview groups required
for thorough risk identification. For several reasons (group dynamics, follow-up probing, ob-
serving and reacting to non-verbal responses, etc.), groups were limited to a maximum of five
participants.

3.3.2 Team Selection and Training
To prepare for the transition of the TBQ into developing organizations, the SEI field test team
was augmented with members from the client organization. Client team members selected to
conduct the risk identification, in the collective, need a working knowledge of software devel-
opment processes, the technology used on the project, the application domain, and the gov-
ernment contracting arena. In keeping with the need to have only peer relations within an
interview, no reporting relationships should exist between team members and interview par-
ticipants.

The entire team needed to be trained, which was done the day before the risk identification
sessions. Training covered the TBQ, the roles, process, and interviewing protocol. The train-
ing also included a simulated risk identification exercise in which individuals on the team as-
sume the various roles in an application. Role playing was used to give the team members
practice in using the questionnaire and the facilitation methods for eliciting risks from partici-

4. See Kirkpatrick, R. J.; Walker, J. A.; & Firth, R. “Software Development Risk Management: An SEI Appraisal,”
SEI Technical Review, 1992.
14 CMU/SEI-93-TR-6

pants. An integral part of the client team member training is observing experienced team mem-
bers during actual interviews. This on-the-job training gives client team members a model to
follow when conducting interviews. Client team members can then undertake critical roles dur-
ing the course of the identification including that of an interviewer (generally after the second
interview).

A key aspect of team training has been the provision of specific knowledge of the project under
examination. This was provided to team members by a project briefing given by project per-
sonnel. It was found adequate if the project briefing was sufficiently detailed to acquaint team
members with the characteristics, terminology, and organizational structure of the project.

3.3.3 Risk Identification
The risk identification session began with a briefing to all risk identification participants con-
sisting of a description of the TBQ method and a summary of the schedule and process to be
followed over the duration of the risk identification. In the interests of minimizing the overall
time spent on identification, all participants selected by the project were asked to attend. At-
tendees may also include personnel who might take an active role in future risk identification
or other risk management activities for the project.

The field test risk identification process consists of a series of interviews with the groups of
selected project personnel. Each interview sessions has two parts:

1. Question and Answer . This segment involves the use of the TBQ and con-
text-sensitive probe questions to elicit issues, concerns, or risks that might
jeopardize the successful completion of the project.

2. Issue Clarification . This segment involves the clarification of the wording
and meaning of issues identified in the Question-and-Answer segment
through the consensual classification of risks into taxonomy groups at the
class-element level. Once participants classify the issues, they consensually
evaluate them to determine which are essentially equivalent. Equivalent
issues are merged into one issue statement.

3.3.4 Identification Conclusion
In concluding the risk identification, it was necessary to provide feedback to all participants.
This was done through a results briefing. This briefing consists of all identified issues, and
some suggestions on the next steps in managing the identified issues.5 The intent of the brief-
ing is to provide the participants with feedback on the results of their efforts.

While the reporting step concludes the risk identification process, it represents just the begin-
ning of the project’s risk management strategy. Consequently a copy of the results of the risk
identification6 is left exclusively with the project manager. The most compelling reason for this

5. For field test purposes, an abbreviated ranking exercise was conducted with a management team on a select-
ed subset of identified issues. The results briefing included a description of the method of selecting risks for
ranking and the results of that ranking.
CMU/SEI-93-TR-6 15

is that many organizations are risk averse. That is, a notion exists that any project having a list
of risks is in trouble and needs help fast. Leaving only a single copy of the identified issues
and risks allows the project manager to retain control over the situation. This also gives the
manager the opportunity to first distinguish among risks, concerns, and misinformation before
circulating the results. Premature release of this information could needlessly force or hamper
the manager’s actions and expose the project to unjustified negative attention.

The process described above evolved over 15 field tests, undergoing significant refinement in
each. We do not recommend the risk identification process described here as the only way to
accomplish effective risk identification. We have, however, found it to be effective and efficient.

6. Specifically, the results were given to the manager as a list consisting of the issue statements and their taxon-
omy group classifications with no individual or interview group identification information.
16 CMU/SEI-93-TR-6

4 Technical Approach

There is a dilemma in developing any method: on the one hand the method should be based
on empirical data; on the other hand, the collection of any data is predicated upon a method.
The problem was resolved by using the two-step procedure described below.

4.1 Taxonomy-Based Questionnaire Derivation

The taxonomy itself is based on three sources of information. The first is the published litera-
ture on software development and software risks.7 The second, and primary, source is the rich
experience of several SEI staff covering development and acquisition in the civilian and mili-
tary sectors. The third source is the analysis of field data and some software literature using
text processing tools to derive a terminological network for software development. This net-
work, as an indicator of conceptual structure, was then evaluated and modified by software
development technical experts.

The questions used to elicit risks from project personnel were developed based on both prior
expertise in software development and the ongoing analysis of risks identified in field tests and
in risk assessments carried out by the SEI (see Section 4.2). In keeping with the ideas detailed
in Chapter 3, the questions were neutrally phrased, and additional follow-up probe questions
and cues were added to assist both the interview participants and the interviewer.

4.2 Evolutionary Development

To improve and test the method, a series of field tests was conducted on active software de-
velopment projects. The information obtained from these tests was used in a tight feedback
loop to change any part of the method—the taxonomy, the questions, and the application pro-
cess—prior to the next field test. In essence, the risk identification method was developed us-
ing an “evolutionary development” process.

In each field test, a few client personnel selected by the client were trained to be part of the
risk identification team. Their roles were either passive (as observers only) or active (as full-
fledged members of the team). Their involvement not only provided additional viewpoints into
the questionnaire and the application, but also served as a test of the applicability and trans-
ferability of the method outside the SEI.

Client participant and client team member feedback and critiques were a part of each field test.
These critiques were particularly useful in making modifications to the application process.
They were also useful in clarifying the meaning of various terms used and in suggesting addi-
tional questions and taxonomic question groups.

7. See Boehm, B. “Software Risk Management: Principles and Practices.” IEEE Software (January 1990): 32-41;
Charette, R. N. Application Strategies for Risk Analysis. New York: McGraw Hill, 1990; Air Force Systems
Command, Software Risk Management, AFSCP/AFLCP 800-45, 1987; and the IEEE Standard Glossary for
Software Engineering, IEEE-STD-610.12, 1990.
CMU/SEI-93-TR-6 17

Field notes on the interview process and discussions, and surfaced issues and risks were an-
alyzed using expert judgment and computational tools. The results of this analysis were also
used to improve the instrument and change the application process for the next field test.

In all, 15 field tests were conducted in 11 organizations. Of these projects, 1 was at precontract
award,8 1 in requirements analysis, 1 at alpha testing, 2 in the maintenance phase, and the
rest somewhere between preliminary design review and critical design review. Domain cover-
age of the projects included C3I (command, control, communication, and intelligence), satel-
lite, civilian C2 (command and control), and information systems.

8. The TBQ was modified in this case. Some questions were removed as being obviously inapplicable at this
stage, and some of the remainder were altered in the verb tense used. Given the size and characteristics of
the proposal team, only two interviews were needed to achieve the desired coverage.
18 CMU/SEI-93-TR-6

5 Lessons Learned

The field tests exposed the risk identification method to a broad spectrum of companies cov-
ering several application domains, development methods, and risk management techniques.
During the field tests, several observations were made that may help organizations to install
more proactive and suitable risk management processes. These observations are summa-
rized below.

5.1 The Method Is Effective and Efficient

The taxonomy-based method has proven effective and efficient in surfacing both acknowl-
edged and previously unacknowledged risks in a wide range of domains and across the life
cycle of software development. According to feedback from participants, especially project
management, it appeared that all known and communicated project risks were surfaced by the
method. In addition, previously unknown issues were raised, which surprised project manage-
ment.

Some projects had been previously subjected to other risk identification methods. Feedback
from these projects was that the other methods took more time and produced less interesting
results or were thought to be less effective in surfacing all issues, concerns, and risks. All
project managers and most participants felt that the time involved in this risk identification
method was well spent. Some projects continue to work actively with the SEI, and a few are
beginning to use the TBQ method internally.

5.2 Process Is Important

The interview group size of five is about the maximum feasible. Any additional coverage of
project personnel should be achieved by increasing the number of interviews and not the num-
ber of participants in an interview.

It is particularly important that each interview group be composed of peers only. Even in orga-
nizations where staff across the project hierarchy felt that they had open and honest commu-
nications, the presence of a reporting relationship in an interview group always had an
inhibiting effect on the subordinates. Furthermore, there should be no reporting relationship
between any member of the risk identification team and those being interviewed.

The interview protocol, which is primarily based on allowing the discussion to proceed natu-
rally through the use of non-judgmental questions and probes, is also important. It is critical
that the interview team exhibit a neutral, non-evaluative posture. However, the interviewer
needs to guide the discussion to ensure that it does not get bogged down, deviate from the
task at hand—risk identification—and move into problem solving, for instance, which is a nat-
ural tendency for such exercises.
CMU/SEI-93-TR-6 19

Additionally, maintenance of the proper interview schedule is important to ensure the formality
of the activity. This also enables interview participants to manage their calendars so they can
be left entirely undisturbed during the interview itself. An interruption of an interview has far
greater impact than one might suppose and should be avoided as much as possible.

Field test interview sessions were artificially constrained to two-and-a-half hours.9 Thus inter-
views often did not cover the entire TBQ. To ensure coverage of the TBQ over the risk identi-
fication, the starting point was tailored to the specific group being interviewed.10 This coupled
with the free flow of discussions that is at the core of the interview protocol, surfaced risks
across taxonomic groups. There was near consensus among participants that a two-and-a-
half hour interview was an upper limit. Additional time required for fuller coverage of the TBQ
should be scheduled as a separate session.

While issue identification by participants was effective, revisiting issues after the actual ques-
tion-and-answer session was important. The current approach of issue clarification via issue
classification and equivalence identification was effective. In addition, issue clarification also
facilitated clearer communication of risks and prepared the way for further analysis.

5.3 Facilitation Skills Can Be Transitioned

The field tests showed that individuals can be effectively trained to conduct a risk identification
using the taxonomy. Furthermore, these individuals, while software and domain knowledge-
able, need not be experts in the areas and, finally, need not have detailed project-specific
knowledge to conduct a risk identification. However, it is most helpful if these individuals have
some prior training and experience in facilitation skills. In any event, all team members found
that observing an experienced team member during a field test interview session was a crucial
part of the training.11

9. Recall that the primary purpose of the field test was to test the TBQ and its application, not to test their use in
a full-fledged risk identification.

10. Developers started with the product engineering class, specialty engineers with the development environment
class, and the project manager with the program constraints class.

11. That is, on-the-job training was necessary to effectively conduct an interview.
20 CMU/SEI-93-TR-6

6 Conclusions

We have described a method for facilitating the systematic and repeatable identification of
risks associated with of a software-dependent development project. This method, while origi-
nally derived from some published literature and previous experience in developing software,
was tested in active software development projects for both its usefulness and for improving
the method itself. While considerable work remains to be done in developing additional meth-
ods not only for risk identification but also for risk analysis, planning, tracking, and control, re-
sults of the field tests encourage the claim that the described method is useful, usable, and
efficient. Below are some recommendations and a brief overview of future work needed for
establishing risk management on a firm footing in software development projects.

Project risks change over time in both characteristics (probability, impact, time frame) and con-
tent—i.e., the risk of yesterday could be the problem of today or cease to be a risk altogether,
and new risks could arise. Consequently, the project should repeat the risk identification and
follow-up processes periodically during the project life cycle.

For acquiring organizations, we recommend that formal risk identification be conducted during
the concept definition phase of an acquisition to determine potential project risks. The knowl-
edge gained could then be used to directly reduce acquisition risk by either removing or miti-
gating high-risk items in the acquisition, or by evaluating the contractor proposals for dealing
with the risks.

For developer organizations, we currently recommend that formal risk identification should be
conducted during the proposal phase and at major project milestones thereafter. Informal risk
identification should be scheduled and performed more frequently. In all cases, the contractor
should report to the customer via existing management reporting channels those risks that
pose significant danger to the project.

This report describes the first of a series of methods for risk management. Integration of the
methods into a comprehensive risk management program is a long-term goal of the SEI. In
the immediate future, the SEI will be exploring methods to analyze the issues and risks that
surfaced in risk identification to judge their validity and relative criticality. This will be done us-
ing both qualitative and quantitative approaches. Next, to facilitate action planning, we will
work on approaches to help classify risks in terms of their sources, their consequences, and
most important, their inter-relationships.

The SEI will continue to update the TBQ regularly, based on changes requested by the user
community or indicated by the analysis of data captured from actual usage in projects. These
changes will be controlled with a formal configuration management process using the Docu-
ment Discrepancy Report included in this report.
CMU/SEI-93-TR-6 21

To enhance and accelerate the acceptance of the SEI risk identification method by all relevant
parties in the software development industry, working and special interest groups will be orga-
nized with the help of industry groups, e.g., software engineering process groups (SEPGs)
and consortia, e.g., software process improvement network (SPIN). These groups will also be
active participants in the further evolution of the taxonomy-based risk identification method.
22 CMU/SEI-93-TR-6

References

[AirForce 87] Air Force Systems Command, Software Risk Management. AFSCP/AFLCP
800-45, 1987.

[Boehm 90] Boehm, B. “Software Risk Management: Principles and Practices.” IEEE
Software (January 1990): 32-41.

[Charette 90] Charette, R. N. Application Strategies for Risk Analysis. New York: McGraw
Hill, 1990.

[IEEE 91] IEEE Software Engineering Standards Collection, Spring 1991.

[IEEE 90] IEEE Standard Glossary for Software Engineering, IEEE-STD-610.12, 1990.

[Kirkpatrick 92] Kirkpatrick, R. J.; Walker, J. A.; & Firth, R. “Software Development Risk Man-
agement: An SEI Appraisal,” SEI Technical Review, Pittsburgh, Pa.: 1992.

[Suchman 90] Suchman, L.; & Jordan, B. “Interactional Troubles in Face-to-Face Survey In-
terviews.” Journal of the American Statistical Association 85, 409 (1990): 232-
253.
CMU/SEI-93-TR-6 23

24 CMU/SEI-93-TR-6

Appendix A Taxonomic Group Definitions

This appendix provides the definitions of the taxonomic groups in the class, element, and at-
tribute categories of the Software Development Risk Taxonomy. An overview of the taxonomy
groups and their hierarchical organization is provided in Figure A-1.

The taxonomy might be used to classify many different factors associated with the develop-
ment of software-dependent systems such as development tasks, quality procedures, or
sources or consequences of risk. However, the definitions as presented here are designed to
facilitate classification of the risks themselves, as associated with the development process.
CMU/SEI-93-TR-6 A-1

A. Product Engineering

1. Requirements

a. Stability

b. Completeness

c. Clarity

d. Validity

e. Feasibility

f. Precedent

g. Scale

2. Design

a. Functionality

b. Difficulty

c. Interfaces

d. Performance

e. Testability

f. Hardware
Constraints

g. Non-Developmental
Software

3. Code and Unit Test

a. Feasibility

b. Testing

c. Coding/Implement-
ation

4. Integration and Test

a. Environment

b. Product

c. System

5. Engineering Specialties

a. Maintainability

b. Reliability

c. Safety

d. Security

e. Human Factors

f. Specifications

B. Development Environment

1. Development Process

a. Formality

b. Suitability

c. Process Control

d. Familiarity

e. Product Control

2. Development System

a. Capacity

b. Suitability

c. Usability

d. Familiarity

e. Reliability

f. System Support

g. Deliverability

3. Management Process

a. Planning

b. Project Organization

c. Management
Experience

d. Program Interfaces

4. Management Methods

a. Monitoring

b. Personnel
Management

c. Quality Assurance

d. Configuration
Management

5. Work Environment

a. Quality Attitude

b. Cooperation

c. Communication

d. Morale

C. Program Constraints

1. Resources

a. Schedule

b. Staff

c. Budget

d. Facilities

2. Contract

a. Type of Contract

b. Restrictions

c. Dependencies

3. Program Interfaces

a. Customer

b. Associate
Contractors

c. Subcontractors

d. Prime Contractor

e. Corporate
Management

f. Vendors

g. Politics

Figure A-1 Taxonomy of Software Development Risks
A-2 CMU/SEI-93-TR-6

A. Product Engineering

Product engineering refers to the system engineering and software engineering activities in-
volved in creating a system that satisfies specified requirements and customer expectations.
These activities include system and software requirements analysis and specification, soft-
ware design and implementation, integration of hardware and software components, and soft-
ware and system test.

The elements of this class cover traditional software engineering activities. They comprise
those technical factors associated with the deliverable product itself, independent of the pro-
cesses or tools used to produce it or the constraints imposed by finite resources or external
factors beyond program control.

Product engineering risks generally result from requirements that are technically difficult or im-
possible to implement, often in combination with inability to negotiate relaxed requirements or
revised budgets and schedules; from inadequate analysis of requirements or design specifi-
cation; or from poor quality design or coding specifications.

1. Requirements
Attributes of the requirements element cover both the quality of the requirements specification
and also the difficulty of implementing a system that satisfies the requirements.

The following attributes characterize the requirements element.

a) Stability
The stability attribute refers to the degree to which the requirements are changing and the pos-
sible effect changing requirements and external interfaces will have on the quality, functional-
ity, schedule, design, integration, and testing of the product being built.

The attribute also includes issues that arise from the inability to control rapidly changing re-
quirements. For example, impact analyses may be inaccurate because it is impossible to de-
fine the baseline against which the changes will be implemented.

b) Completeness
Missing or incompletely specified requirements may appear in many forms, such as a require-
ments document with many functions or parameters “to be defined”; requirements that are not
specified adequately to develop acceptance criteria, or inadvertently omitted requirements.
When missing information is not supplied in a timely manner, implementation may be based
on contractor assumptions that differ from customer expectations.

When customer expectations are not documented in the specification, they are not budgeted
into the cost and schedule.
CMU/SEI-93-TR-6 A-3

c) Clarity
This attribute refers to ambiguously or imprecisely written individual requirements that are not
resolved until late in the development phase. This lack of a mutual contractor and customer
understanding may require re-work to meet the customer intent for a requirement.

d) Validity
This attribute refers to whether the aggregate requirements reflect customer intentions for the
product. This may be affected by misunderstandings of the written requirements by the con-
tractor or customer, unwritten customer expectations or requirements, or a specification in
which the end user did not have inputs.

This attribute is affected by the completeness and clarity attributes of the requirements spec-
ifications, but refers to the larger question of the system as a whole meeting customer intent.

e) Feasibility
The feasibility attribute refers to the difficulty of implementing a single technical or operational
requirement, or of simultaneously meeting conflicting requirements. Sometimes two require-
ments by themselves are feasible, but together are not; they cannot both exist in the same
product at the same time.

Also included is the ability to determine an adequate qualification method for demonstration
that the system satisfies the requirement.

f) Precedent
The precedent attribute concerns capabilities that have not been successfully implemented in
any existing systems or are beyond the experience of program personnel or of the company.
The degree of risk depends on allocation of additional schedule and budget to determine the
feasibility of their implementation; contingency plans in case the requirements are not feasible
as stated; and flexibility in the contract to allocate implementation budget and schedule based
on the outcome of the feasibility study.

Even when unprecedented requirements are feasible, there may still be a risk of underestimat-
ing the difficulty of implementation and committing to an inadequate budget and schedule.

g) Scale
This attribute covers both technical and management challenges presented by large complex
systems development.

Technical challenges include satisfaction of timing, scheduling and response requirements,
communication among processors, complexity of system integration, analysis of inter-compo-
nent dependencies, and impact due to changes in requirements.
A-4 CMU/SEI-93-TR-6

Management of a large number of tasks and people introduces a complexity in such areas as
project organization, delegation of responsibilities, communication among management and
peers, and configuration management.

2. Design
The attributes of the design element cover the design and feasibility of algorithms, functions
or performance requirements, and internal and external product interfaces. Difficulty in testing
may begin here with failure to work to testable requirements or to include test features in the
design.The following attributes characterize the design element.

a) Functionality
This attribute covers functional requirements that may not submit to a feasible design, or use
of specified algorithms or designs without a high degree of certainty that they will satisfy their
source requirements. Algorithm and design studies may not have used appropriate investiga-
tion techniques or may show marginal feasibility.

b) Difficulty
The difficulty attribute refers to functional or design requirements that may be extremely diffi-
cult to realize. Systems engineering may design a system architecture difficult to implement,
or requirements analysis may have been based on optimistic design assumptions.

The difficulty attribute differs from design feasibility in that it does not proceed from pre-or-
dained algorithms or designs.

c) Interfaces
This attribute covers all hardware and software interfaces that are within the scope of the de-
velopment program, including interfaces between configuration items, and the techniques for
defining and managing the interfaces. Special note is taken of non-developmental software
and developmental hardware interfaces.

d) Performance
The performance attribute refers to time-critical performance: user and real-time response re-
quirements, throughput requirements, performance analyses, and performance modeling
throughout the development cycle.

e) Testability
The testability attribute covers the amenability of the design to testing, design of features to
facilitate testing, and the inclusion in the design process of people who will design and conduct
product tests.
CMU/SEI-93-TR-6 A-5

f) Hardware Constraints
This attribute covers target hardware with respect to system and processor architecture, and
the dependence on hardware to meet system and software performance requirements. These
constraints may include throughput or memory speeds, real-time response capability, data-
base access or capacity limitations, insufficient reliability, unsuitability to system function, or
insufficiency in the amount of specified hardware.

g) Non-Developmental Software
Since non-developmental software (NDS) is not designed to system requirements, but select-
ed as a “best fit,” it may not conform precisely to performance, operability or supportability re-
quirements.

The customer may not accept vendor or developer test and reliability data to demonstrate sat-
isfaction of the requirements allocated to NDS. It may then be difficult to produce this data to
satisfy acceptance criteria and within the estimated NDS test budget.

Requirements changes may necessitate re-engineering or reliance on vendors for special pur-
pose upgrades.

3. Code and Unit Test
Attributes of this element are associated with the quality and stability of software or interface
specifications, and constraints that may present implementation or test difficulties.

a) Feasibility
The feasibility attribute of the code and unit test element addresses possible difficulties that
may arise from poor design or design specification or from inherently difficult implementation
needs.

For example, the design may not have quality attributes such as module cohesiveness or in-
terface minimization; the size of the modules may contribute complexity; the design may not
be specified in sufficient detail, requiring the programmer to make assumptions or design de-
cisions during coding; or the design and interface specifications may be changing, perhaps
without an approved detailed design baseline; and the use of developmental hardware may
make an additional contribution to inadequate or unstable interface specification. Or, the na-
ture of the system itself may aggravate the difficulty and complexity of the coding task.

b) Unit Test
Factors affecting unit test include planning and preparation and also the resources and time
allocated for test.
A-6 CMU/SEI-93-TR-6

Constituents of these factors are: entering unit test with quality code obtained from formal or
informal code inspection or verification procedures; pre-planned test cases that have been
verified to test unit requirements; a test bed consisting of the necessary hardware or emula-
tors, and software or simulators; test data to satisfy the planned test; and sufficient schedule
to plan and carry out the test plan.

c) Coding/Implementation
This attribute addresses the implications of implementation constraints. Some of these are:
target hardware that is marginal or inadequate with regard to speed, architecture, memory size
or external storage capacity; required implementation languages or methods; or differences
between the development and target hardware.

4. Integration and Test
This element covers integration and test planning, execution, and facilities for both the con-
tractual product and for the integration of the product into the system or site environment.

a) Environment
The integration and test environment includes the hardware and software support facilities and
adequate test cases reflecting realistic operational scenarios and realistic test data and con-
ditions.

This attribute addresses the adequacy of this environment to enable integration in a realistic
environment or to fully test all functional and performance requirements.

b) Product
The product integration attribute refers to integration of the software components to each other
and to the target hardware, and testing of the contractually deliverable product. Factors that
may affect this are internal interface specifications for either hardware or software, testability
of requirements, negotiation of customer agreement on test criteria, adequacy of test specifi-
cations, and sufficiency of time for integration and test.

c) System
The system integration attribute refers to integration of the contractual product to interfacing
systems or sites. Factors associated with this attribute are external interface specifications,
ability to faithfully produce system interface conditions prior to site or system integration, ac-
cess to the system or site being interfaced to, adequacy of time for testing, and associate con-
tractor relationships.
CMU/SEI-93-TR-6 A-7

5. Engineering Specialities
The engineering specialty requirements are treated separately from the general requirements
element primarily because they are often addressed by specialists who may not be full time
on the program. This taxonomic separation is a device to ensure that these specialists are
called in to analyze the risks associated with their areas of expertise.

a) Maintainability
Maintainability may be impaired by poor software architecture, design, code, or documenta-
tion resulting from undefined or un-enforced standards, or from neglecting to analyze the sys-
tem from a maintenance point of view.

b) Reliability
System reliability or availability requirements may be affected by hardware not meeting its re-
liability specifications or system complexity that aggravates difficulties in meeting recovery
timelines. Reliability or availability requirements allocated to software may be stated in abso-
lute terms, rather than as separable from hardware and independently testable.

c) Safety
This attribute addresses the difficulty of implementing allocated safety requirements and also
the potential difficulty of demonstrating satisfaction of requirements by faithful simulation of the
unsafe conditions and corrective actions. Full demonstration may not be possible until the sys-
tem is installed and operational.

d) Security
This attribute addresses lack of experience in implementing the required level of system se-
curity that may result in underestimation of the effort required for rigorous verification methods,
certification and accreditation, and secure or trusted development process logistics; develop-
ing to unprecedented requirements; and dependencies on delivery of certified hardware or
software.

e) Human Factors
Meeting human factors requirements is dependent on understanding the operational environ-
ment of the installed system and agreement with various customer and user factions on a mu-
tual understanding of the expectations embodied in the human factors requirements. It is
difficult to convey this understanding in a written specification. Mutual agreement on the hu-
man interface may require continuous prototyping and demonstration to various customer fac-
tions.

f) Specifications
This attribute addresses specifications for the system, hardware, software, interface, or test
requirements or design at any level with respect to feasibility of implementation and the quality
attributes of stability, completeness, clarity, and verifiability.
A-8 CMU/SEI-93-TR-6

B. Development Environment

The development environment class addresses the project environment and the process used
to engineer a software product. This environment includes the development process and sys-
tem, management methods, and work environment. These environmental elements are char-
acterized below by their component attributes.

1. Development Process
The development process element refers to the process by which the contractor proposes to
satisfy the customer's requirements. The process is the sequence of steps—the inputs, out-
puts, actions, validation criteria, and monitoring activities—leading from the initial requirement
specification to the final delivered product. The development process includes such phases as
requirements analysis, product definition, product creation, testing, and delivery. It includes
both general management processes such as costing, schedule tracking, and personnel as-
signment, and also project-specific processes such as feasibility studies, design reviews, and
regression testing.

This element groups risks that result from a development process that is inadequately
planned, defined and documented; that is not suited to the activities necessary to accomplish
the project goals; and that is poorly communicated to the staff and lacks enforced usage.

a) Formality
Formality of the development process is a function of the degree to which a consistent process
is defined, documented, and communicated for all aspects and phases of the development.

b) Suitability
Suitability refers to the adequacy with which the selected development model, process, meth-
ods, and tools support the scope and type of activities required for the specific program.

c) Process Control
Process control refers not only to ensuring usage of the defined process by program person-
nel, but also to the measurement and improvement of the process based on observation with
respect to quality and productivity goals. Control may be complicated due to distributed devel-
opment sites.

d) Familiarity
Familiarity with the development process covers knowledge of, experience in, and comfort
with the prescribed process.
CMU/SEI-93-TR-6 A-9

e) Product Control
Product control is dependent on traceability of requirements from the source specification
through implementation such that the product test will demonstrate the source requirements.
The change control process makes use of the traceability mechanism in impact analyses and
reflects all resultant document modifications including interface and test documentation.

2. Development System
The development system element addresses the hardware and software tools and supporting
equipment used in product development. This includes computer aided software engineering
tools, simulators, compilers, test equipment, and host computer systems.

a) Capacity
Risks associated with the capacity of the development system may result from too few work-
stations, insufficient processing power or database storage, or other inadequacies in equip-
ment to support parallel activities for development, test, and support activities.

b) Suitability
Suitability of the development system is associated with the degree to which it is supportive of
the specific development models, processes, methods, procedures, and activities required
and selected for the program. This includes the development, management, documentation,
and configuration management processes.

c) Usability
Usability refers to development system documentation, accessibility and workspace, as well
as ease of use.

d) Familiarity
Development system familiarity depends on prior use of the system by the company and by
project personnel as well as adequate training for new users.

e) Reliability
Development system reliability is a measure of whether the needed components of the devel-
opment system are available and working properly whenever required by any program per-
sonnel.

f) System Support
Development system support involves training in use of the system, access to expert users or
consultants, and repair or resolution of problems by vendors.
A-10 CMU/SEI-93-TR-6

g) Deliverability
Some contracts require delivery of the development system. Risks may result from neglecting
to bid and allocate resources to ensure that the development system meets all deliverable re-
quirements.

3. Management Process
The management process element pertains to risks associated with planning, monitoring, and
controlling budget and schedule; with controlling factors involved in defining, implementing,
and testing the product; with managing project personnel; and with handling external organi-
zations including the customer, senior management, matrix management, and other contrac-
tors.

a) Planning
The planning attribute addresses risks associated with developing a well-defined plan that is
responsive to contingencies as well as long-range goals and that was formulated with the input
and acquiescence of those affected by it. Also addressed are managing according to the plan
and formally modifying the plan when changes are necessary.

b) Project Organization
This attribute addresses the effectiveness of the program organization, the effective definition
of roles and responsibilities, and the assurance that these roles and lines of authority are un-
derstood by program personnel.

c) Management Experience
This attribute refers to the experience of all levels of managers with respect to management,
software development management, the application domain, the scale and complexity of the
system and program, the selected development process, and hands-on development of soft-
ware.

d) Program Interfaces
This attribute refers to the interactions of managers at all levels with program personnel at all
levels, and with external personnel such as the customer, senior management, and peer man-
agers.

4. Management Methods
This element refers to methods for managing both the development of the product and pro-
gram personnel. These include quality assurance, configuration management, staff develop-
ment with respect to program needs, and maintaining communication about program status
and needs.
CMU/SEI-93-TR-6 A-11

a) Monitoring
The monitoring includes the activities of obtaining and acting upon status reports, allocating
status information to the appropriate program organizations, and maintaining and using
progress metrics.

b) Personnel Management
Personnel management refers to selection and training of program members and ensuring
that they: take part in planning and customer interaction for their areas of responsibility; work
according to plan; and receive the help they need or ask for to carry out their responsibilities.

c) Quality Assurance
The quality assurance attribute refers to the procedures instituted for ensuring both that con-
tractual processes and standards are implemented properly for all program activities, and that
the quality assurance function is adequately staffed to perform its duties.

d) Configuration Management
The configuration management (CM) attribute addresses both staffing and tools for the CM
function as well as the complexity of the required CM process with respect to such factors as
multiple development and installation sites and product coordination with existing, possibly
changing, systems.

5. Work Environment
The work environment element refers to subjective aspects of the environment such as the
amount of care given to ensuring that people are kept informed of program goals and informa-
tion, the way people work together, responsiveness to staff inputs, and the attitude and morale
of the program personnel.

a) Quality Attitude
This attribute refers to the tendency of program personnel to do quality work in general and to
conform to specific quality standards for the program and product.

b) Cooperation
The cooperation attribute addresses lack of team spirit among development staff both within
and across work groups and the failure of all management levels to demonstrate that best ef-
forts are being made to remove barriers to efficient accomplishment of work.

c) Communication
Risks that result from poor communication are due to lack of knowledge of the system mission,
requirements, and design goals and methods, or to lack of information about the importance
of program goals to the company or the project.
A-12 CMU/SEI-93-TR-6

d) Morale
Risks that result from low morale range across low levels of enthusiasm and thus low perfor-
mance, productivity or creativity; anger that may result in intentional damage to the project or
the product; mass exodus of staff from the project; and a reputation within the company that
makes it difficult to recruit.
CMU/SEI-93-TR-6 A-13

C. Program Constraints

Program constraints refer to the “externals” of the project. These are factors that may be out-
side the control of the project but can still have major effects on its success or constitute sourc-
es of substantial risk.

1. Resources
This element addresses resources for which the program is dependent on factors outside pro-
gram control to obtain and maintain. These include schedule, staff, budget, and facilities.

a) Schedule
This attribute refers to the stability of the schedule with respect to internal and external events
or dependencies and the viability of estimates and planning for all phases and aspects of the
program.

b) Staff
This attribute refers to the stability and adequacy of the staff in terms of numbers and skill lev-
els, their experience and skills in the required technical areas and application domain, and
their availability when needed.

c) Budget
This attribute refers to the stability of the budget with respect to internal and external events
or dependencies and the viability of estimates and planning for all phases and aspects of the
program.

d) Facilities
This attribute refers to the adequacy of the program facilities for development, integration, and
testing of the product.

2. Contract
Risks associated with the program contract are classified according to contract type, restric-
tions, and dependencies.

a) Type of Contract
This attribute covers the payment terms (cost plus award fee, cost plus fixed fee, etc.) and the
contractual requirements associated with such items as the Statement of Work, Contract Data
Requirements List, and the amount and conditions of customer involvement.
A-14 CMU/SEI-93-TR-6

b) Restrictions
Contract restrictions and restraints refer to contractual directives to, for example, use specific
development methods or equipment and the resultant complications such as acquisition of
data rights for use of non-developmental software.

c) Dependencies
This attribute refers to the possible contractual dependencies on outside contractors or ven-
dors, customer-furnished equipment or software, or other outside products and services.

3. Program Interfaces
This element consists of the various interfaces with entities and organizations outside the de-
velopment program itself.

a) Customer
The customer attribute refers to the customer’s level of skill and experience in the technical or
application domain of the program as well as difficult working relationships or poor mecha-
nisms for attaining customer agreement and approvals, not having access to certain customer
factions, or not being able to communicate with the customer in a forthright manner.

b) Associate Contractors
The presence of associate contractors may introduce risks due to conflicting political agendas,
problems of interfaces to systems being developed by outside organizations, or lack of coop-
eration in coordinating schedules and configuration changes.

c) Subcontractors
The presence of subcontractors may introduce risks due to inadequate task definitions and
subcontractor management mechanisms, or to not transferring subcontractor technology and
knowledge to the program or corporation.

d) Prime Contractor
When the program is a subcontract, risks may arise from poorly defined task definitions, com-
plex reporting arrangements, or dependencies on technical or programmatic information.

e) Corporate Management
Risks in the corporate management area include poor communication and direction from se-
nior management as well as non-optimum levels of support.

f) Vendors
Vendor risks may present themselves in the forms of dependencies on deliveries and support
for critical system components.
CMU/SEI-93-TR-6 A-15

g) Politics
Political risks may accrue from relationships with the company, customer, associate contrac-
tors or subcontractors, and may affect technical decisions.
A-16 CMU/SEI-93-TR-6

Appendix B Taxonomy-Based Questionnaire
CMU/SEI-93-TR-6 B-1

B-2 CMU/SEI-93-TR-6

A. Product Engineering

1. Requirements

a. Stability
[Are requirements changing even as the product is being produced?]

[1] Are the requirements stable?

(No) (1.a) What is the effect on the system?

• Quality
• Functionality
• Schedule
• Integration
• Design
• Testing

[2] Are the external interfaces changing?

b. Completeness
[Are requirements missing or incompletely specified?]

[3] Are there any TBDs in the specifications?

[4] Are there requirements you know should be in the specification but aren’t?

(Yes) (4.a) Will you be able to get these requirements into the system?

[5] Does the customer have unwritten requirements/expectations?

(Yes) (5.a) Is there a way to capture these requirements?

[6] Are the external interfaces completely defined?

c. Clarity
[Are requirements unclear or in need of interpretation?]

[7] Are you able to understand the requirements as written?

(No) (7.a) Are the ambiguities being resolved satisfactorily?

(Yes) (7.b) There are no ambiguities or problems of interpretation?

d. Validity
[Will the requirements lead to the product the customer has in mind?]

[8] Are there any requirements that may not specify what the customer really wants?

(Yes) (8.a) How are you resolving this?

[9] Do you and the customer understand the same thing by the requirements?

(Yes) (9.a) Is there a process by which to determine this?
B- 3

[10] How do you validate the requirements?

• Prototyping
• Analysis
• Simulations

e. Feasibility
[Are requirements infeasible from an analytical point of view?]

[11] Are there any requirements that are technically difficult to implement?

(Yes) (11.a) What are they?

(Yes) (11.b) Why are they difficult to implement?

(No) (11.c) Were feasibility studies done for these requirements?

(Yes) (11.c.1) How confident are you of the assumptions made in the
studies?

f. Precedent
[Do requirements specify something never done before, or that your company has not done
before?]

[12] Are there any state-of-the-art requirements?

• Technologies
• Methods
• Languages
• Hardware

(No) (12.a) Are any of these new to you?

(Yes) (12.b) Does the program have sufficient knowledge in these areas?

(No) (12.b.1) Is there a plan for acquiring knowledge in these areas?

g. Scale
[Do requirements specify a product larger, more complex, or requiring a larger organization than
in the experience of the company?]

[13] Is the system size and complexity a concern?

(No) (13.a) Have you done something of this size and complexity before?

[14] Does the size require a larger organization than usual for your company?

2. Design

a. Functionality
[Are there any potential problems in meeting functionality requirements?]

[15] Are there any specified algorithms that may not satisfy the requirements?

(No) (15.a) Are any of the algorithms or designs marginal with respect to meeting
requirements?
B-4

[16] How do you determine the feasibility of algorithms and designs?

• Prototyping
• Modeling
• Analysis
• Simulation

b. Difficulty
[Will the design and/or implementation be difficult to achieve?]

[17] Does any of the design depend on unrealistic or optimistic assumptions?

[18] Are there any requirements or functions that are difficult to design?

(No) (18.a) Do you have solutions for all the requirements?

(Yes) (18.b) What are the requirements?

• Why are they difficult?

c. Interfaces
[Are the internal interfaces (hardware and software) well defined and controlled?]

[19] Are the internal interfaces well defined?

• Software-to-software
• Software-to-hardware

[20] Is there a process for defining internal interfaces?

(Yes) (20.a) Is there a change control process for internal interfaces?

[21] Is hardware being developed in parallel with software?

(Yes) (21.a) Are the hardware specifications changing?

(Yes) (21.b) Have all the interfaces to software been defined?

(Yes) (21.c) Will there be engineering design models that can be used to test the
software?

d. Performance
[Are there stringent response time or throughput requirements?]

[22] Are there any problems with performance?

• Throughput
• Scheduling asynchronous real-time events
• Real-time response
• Recovery timelines
• Response time
• Database response, contention, or access
B-5

[23] Has a performance analysis been done?

(Yes) (23.a) What is your level of confidence in the performance analysis?

(Yes) (23.b) Do you have a model to track performance through design and
implementation?

e. Testability
[Is the product difficult or impossible to test?]

[24] Is the software going to be easy to test?

[25] Does the design include features to aid testing?

[26] Do the testers get involved in analyzing requirements?

f. Hardware Constraints
[Are there tight constraints on the target hardware?]

[27] Does the hardware limit your ability to meet any requirements?

• Architecture
• Memory capacity
• Throughput
• Real-time response
• Response time
• Recovery timelines
• Database performance
• Functionality
• Reliability
• Availability

g. Non-Developmental Software
[Are there problems with software used in the program but not developed by the program?]

If re-used or re-engineered software exists

[28] Are you reusing or re-engineering software not developed on the program?

(Yes) (28.a) Do you foresee any problems?

• Documentation
• Performance
• Functionality
• Timely delivery
• Customization
B-6

If COTS software is being used

[29] Are there any problems with using COTS (commercial off-the-shelf) software?

• Insufficient documentation to determine interfaces, size, or performance
• Poor performance
• Requires a large share of memory or database storage
• Difficult to interface with application software
• Not thoroughly tested
• Not bug free
• Not maintained adequately
• Slow vendor response

[30] Do you foresee any problem with integrating COTS software updates or revisions?

3. Code and Unit Test

a. Feasibility
[Is the implementation of the design difficult or impossible?]

[31] Are any parts of the product implementation not completely defined by the design
specification?

[32] Are the selected algorithms and designs easy to implement?

b. Testing
[Are the specified level and time for unit testing adequate?]

[33] Do you begin unit testing before you verify code with respect to the design?

[34] Has sufficient unit testing been specified?

[35] Is there sufficient time to perform all the unit testing you think should be done?

[36] Will compromises be made regarding unit testing if there are schedule problems?

c. Coding/Implementation
[Are there any problems with coding and implementation?]

[37] Are the design specifications in sufficient detail to write the code?

[38] Is the design changing while coding is being done?

[39] Are there system constraints that make the code difficult to write?

• Timing
• Memory
• External storage

[40] Is the language suitable for producing the software on this program?
B-7

[41] Are there multiple languages used on the program?

(Yes) (41.a) Is there interface compatibility between the code produced by the
different compilers?

[42] Is the development computer the same as the target computer?

(No) (42.a) Are there compiler differences between the two?

If developmental hardware is being used

[43] Are the hardware specifications adequate to code the software?

[44] Are the hardware specifications changing while the code is being written?

4. Integration and Test

a. Environment
[Is the integration and test environment adequate?]

[45] Will there be sufficient hardware to do adequate integration and testing?

[46] Is there any problem with developing realistic scenarios and test data to demonstrate
any requirements?

• Specified data traffic
• Real-time response
• Asynchronous event handling
• Multi-user interaction

[47] Are you able to verify performance in your facility?

[48] Does hardware and software instrumentation facilitate testing?

(Yes) (48.a) Is it sufficient for all testing?

b. Product
[Is the interface definition inadequate, facilities inadequate, time insufficient?]

[49] Will the target hardware be available when needed?

[50] Have acceptance criteria been agreed to for all requirements?

(Yes) (50.a) Is there a formal agreement?

[51] Are the external interfaces defined, documented, and baselined?

[52] Are there any requirements that will be difficult to test?

[53] Has sufficient product integration been specified?

[54] Has adequate time been allocated for product integration and test?
B-8

If COTS

[55] Will vendor data be accepted in verification of requirements allocated to COTS
products?

(Yes) (55.a) Is the contract clear on that?

c. System
[System integration uncoordinated, poor interface definition, or inadequate facilities?]

[56] Has sufficient system integration been specified?

[57] Has adequate time been allocated for system integration and test?

[58] Are all contractors part of the integration team?

[59] Will the product be integrated into an existing system?

(Yes) (59.a) Is there a parallel cutover period with the existing system?

(No) (59.a.1) How will you guarantee the product will work correctly when
integrated?

[60] Will system integration occur on customer site?

5. Engineering Specialties

a. Maintainability
[Will the implementation be difficult to understand or maintain?]

[61] Does the architecture, design, or code create any maintenance difficulties?

[62] Are the maintenance people involved early in the design?

[63] Is the product documentation adequate for maintenance by an outside organization?

b. Reliability
[Are the reliability or availability requirements difficult to meet?]

[64] Are reliability requirements allocated to the software?

[65] Are availability requirements allocated to the software?

(Yes) (65.a) Are recovery timelines any problem?

c. Safety
[Are the safety requirements infeasible and not demonstrable?]

[66] Are safety requirements allocated to the software?

(Yes) (66.a) Do you see any difficulty in meeting the safety requirements?

[67] Will it be difficult to verify satisfaction of safety requirements?
B-9

d. Security
[Are the security requirements more stringent than the current state of the practice or program
experience?]

[68] Are there unprecedented or state-of-the-art security requirements?

[69] Is it an Orange Book system?

[70] Have you implemented this level of security before?

e. Human Factors
[Will the system will be difficult to use because of poor human interface definition?]

[71] Do you see any difficulty in meeting the Human Factors requirements?

(No) (71.a) How are you ensuring that you will meet the human interface
requirements?

If prototyping
(Yes) (71.a.1) Is it a throw-away prototype?

(No) (71.a.1a) Are you doing evolutionary development?

(Yes) (71.a.1a.1) Are you experienced in this type of
development?

(Yes) (71.a.1a.2) Are interim versions deliverable?

(Yes) (71.a.1a.3) Does this complicate change control?

f. Specifications
[Is the documentation adequate to design, implement, and test the system?]

[72] Is the software requirements specification adequate to design the system?

[73] Are the hardware specifications adequate to design and implement the software?

[74] Are the external interface requirements well specified?

[75] Are the test specifications adequate to fully test the system?

If in or past implementation phase

[76] Are the design specifications adequate to implement the system?

• Internal interfaces
B-10

B. Development Environment

1. Development Process

a. Formality
[Will the implementation be difficult to understand or maintain?]

[77] Is there more than one development model being used?

• Spiral
• Waterfall
• Incremental

(Yes) (77.a) Is coordination between them a problem?

[78] Are there formal, controlled plans for all development activities?

• Requirements analysis
• Design
• Code
• Integration and test
• Installation
• Quality assurance
• Configuration management

(Yes) (78.a) Do the plans specify the process well?

(Yes) (78.b) Are developers familiar with the plans?

b. Suitability
[Is the process suited to the development model, e.g., spiral, prototyping?]

[79] Is the development process adequate for this product?

[80] Is the development process supported by a compatible set of procedures, methods, and
tools?

c. Process Control
[Is the software development process enforced, monitored, and controlled using metrics? Are
distributed development sites coordinated?]

[81] Does everyone follow the development process?

(Yes) (81.a) How is this insured?

[82] Can you measure whether the development process is meeting your productivity and
quality goals?

If there are distributed development sites

[83] Is there adequate coordination among distributed development sites?
B- 11

d. Familiarity
[Are the project members experienced in use of the process? Is the process understood by all
staff members?]

[84] Are people comfortable with the development process?

e. Product Control
[Are there mechanisms for controlling changes in the product?]

[85] Is there a requirements traceability mechanism that tracks requirements from the source
specification through test cases?

[86] Is the traceability mechanism used in evaluating requirement change impact analyses?

[87] Is there a formal change control process?

(Yes) (87.a) Does it cover all changes to baselined requirements, design, code, and
documentation?

[88] Are changes at any level mapped up to the system level and down through the test
level?

[89] Is there adequate analysis when new requirements are added to the system?

[90] Do you have a way to track interfaces?

[91] Are the test plans and procedures updated as part of the change process?

2. Development System

a. Capacity
[Is there sufficient work station processing power, memory, or storage capacity?]

[92] Are there enough workstations and processing capacity for all staff?

[93] Is there sufficient capacity for overlapping phases, such as coding, integration and test?

b. Suitability
[Does the development system support all phases, activities, and functions?]

[94] Does the development system support all aspects of the program?

• Requirements analysis
• Performance analysis
• Design
• Coding
• Test
• Documentation
• Configuration management
• Management tracking
• Requirements traceability
B-12

c. Usability
[How easy is the development system to use?]

[95] Do people find the development system easy to use?

[96] Is there good documentation of the development system?

d. Familiarity
[Is there little prior company or project member experience with the development system?]

[97] Have people used these tools and methods before?

e. Reliability
 [Does the system suffer from software bugs, down-time, insufficient built-in back-up?]

[98] Is the system considered reliable?

• Compiler
• Development tools
• Hardware

f. System Support
[Is there timely expert or vendor support for the system?]

[99] Are the people trained in use of the development tools?

[100] Do you have access to experts in use of the system?

[101] Do the vendors respond to problems rapidly?

g. Deliverability
[Are the definition and acceptance requirements defined for delivering the development system
to the customer not budgeted? HINT: If the participants are confused about this, it is probably not
an issue from a risk perspective.]

[102] Are you delivering the development system to the customer?

(Yes) (102.a) Have adequate budget, schedule, and resources been allocated for this
deliverable?

3. Management Process

a. Planning
[Is the planning timely, technical leads included, contingency planning done?]

[103] Is the program managed according to the plan?

(Yes) (103.a) Do people routinely get pulled away to fight fires?

[104] Is re-planning done when disruptions occur?
B-13

[105] Are people at all levels included in planning their own work?

[106] Are there contingency plans for known risks?

(Yes) (106.a) How do you determine when to activate the contingencies?

[107] Are long-term issues being adequately addressed?

b. Project Organization
[Are the roles and reporting relationships clear?]

[108] Is the program organization effective?

[109] Do people understand their own and others’ roles in the program?

[110] Do people know who has authority for what?

c. Management Experience
[Are the managers experienced in software development, software management, the application
domain, the development process, or on large programs?]

[111] Does the program have experienced managers?

• Software management
• Hands-on software development
• With this development process
• In the application domain
• Program size or complexity

d. Program Interfaces
[Is there poor interface with customer, other contractors, senior and/or peer managers?]

[112] Does management communicate problems up and down the line?

[113] Are conflicts with the customer documented and resolved in a timely manner?

[114] Does management involve appropriate program members in meetings with the
customer?

• Technical leaders
• Developers
• Analysts

[115] Does management work to ensure that all customer factions are represented in
decisions regarding functionality and operation?

[116] Is it good politics to present an optimistic picture to the customer or senior management?
B-14

4. Management Methods

a. Monitoring
[Are management metrics defined and development progress tracked?]

[117] Are there periodic structured status reports?

(Yes) (117.a) Do people get a response to their status reports?

[118] Does appropriate information get reported to the right organizational levels?

[119] Do you track progress versus plan?

(Yes) (119.a) Does management have a clear picture of what is going on?

b. Personnel Management
[Are project personnel trained and used appropriately?]

[120] Do people get trained in skills required for this program?

(Yes) (120.a) Is this part of the program plan?

[121] Do people get assigned to the program who do not match the experience profile for your
work area?

[122] Is it easy for program members to get management action?

[123] Are program members at all levels aware of their status versus plan?

[124] Do people feel it’s important to keep to the plan?

[125] Does management consult with people before making decisions that affect their work?

[126] Does program management involve appropriate program members in meetings with the
customer?

• Technical leaders
• Developers
• Analysts

c. Quality Assurance
[Are there adequate procedures and resources to assure product quality?]

[127] Is the software quality assurance function adequately staffed on this program?

[128] Do you have defined mechanisms for assuring quality?

(Yes) (128.a) Do all areas and phases have quality procedures?

(Yes) (128.b) Are people used to working with these procedures?
B-15

d. Configuration Management
[Are the change procedures or version control, including installation site(s), adequate?]

[129] Do you have an adequate configuration management system?

[130] Is the configuration management function adequately staffed?

[131] Is coordination required with an installed system?

(Yes) (131.a) Is there adequate configuration management of the installed system?

(Yes) (131.b) Does the configuration management system synchronize your work
with site changes?

[132] Are you installing in multiple sites?

(Yes) (132.a) Does the configuration management system provide for multiple sites?

5. Work Environment

a. Quality Attitude
[Is there a lack of orientation toward quality work?]

[133] Are all staff levels oriented toward quality procedures?

[134] Does schedule get in the way of quality?

b. Cooperation
[Is there a lack of team spirit? Does conflict resolution require management intervention?]

[135] Do people work cooperatively across functional boundaries?

[136] Do people work effectively toward common goals?

[137] Is management intervention sometimes required to get people working together?

c. Communication
[Is there poor awareness of mission or goals, poor communication of technical information
among peers and managers?]

[138] Is there good communication among the members of the program?

• Managers
• Technical leaders
• Developers
• Testers
• Configuration management
• Quality assurance
B-16

[139] Are the managers receptive to communication from program staff?

(Yes) (139.a) Do you feel free to ask your managers for help?

(Yes) (139.b) Are members of the program able to raise risks without having a
solution in hand?

[140] Do the program members get timely notification of events that may affect their work?

(Yes) (140.a) Is this formal or informal?

d. Morale
[Is there a non-productive, non-creative atmosphere? Do people feel that there is no recognition
or reward for superior work?]

[141] How is morale on the program?

(No) (141.a) What is the main contributing factor to low morale?

[142] Is there any problem keeping the people you need?
B-17

B-18

C. Program Constraints

1. Resources

a. Schedule
[Is the schedule inadequate or unstable?]

[143] Has the schedule been stable?

[144] Is the schedule realistic?

(Yes) (144.a) Is the estimation method based on historical data?

(Yes) (144.b) Has the method worked well in the past?

[145] Is there anything for which adequate schedule was not planned?

• Analysis and studies
• QA
• Training
• Maintenance courses and training
• Capital equipment
• Deliverable development system

[146] Are there external dependencies which are likely to impact the schedule?

b. Staff
[Is the staff inexperienced, lacking domain knowledge, lacking skills, or understaffed?]

[147] Are there any areas in which the required technical skills are lacking?

• Software engineering and requirements analysis method
• Algorithm expertise
• Design and design methods
• Programming languages
• Integration and test methods
• Reliability
• Maintainability
• Availability
• Human factors
• Configuration management
• Quality assurance
• Target environment
• Level of security
• COTS
• Reuse software
• Operating system
• Database
 B-19

• Application domain
• Performance analysis
• Time-critical applications

[148] Do you have adequate personnel to staff the program?

[149] Is the staffing stable?

[150] Do you have access to the right people when you need them?

[151] Have the program members implemented systems of this type?

[152] Is the program reliant on a few key people?

[153] Is there any problem with getting cleared people?

c. Budget
[Is the funding insufficient or unstable?]

[154] Is the budget stable?

[155] Is the budget based on a realistic estimate?

(Yes) (155.a) Is the estimation method based on historical data?

(Yes) (155.b) Has the method worked well in the past?

[156] Have features or functions been deleted as part of a design-to-cost effort?

[157] Is there anything for which adequate budget was not allocated?

• Analysis and studies
• QA
• Training
• Maintenance courses
• Capital equipment
• Deliverable development system

[158] Do budget changes accompany requirement changes?

(Yes) (158.a) Is this a standard part of the change control process?

d. Facilities
[Are the facilities adequate for building and delivering the product?]

[159] Are the development facilities adequate?

[160] Is the integration environment adequate?
B-20

2. Contract

a. Type of Contract
[Is the contract type a source of risk to the program?]

[161] What type of contract do you have? (Cost plus award fee, fixed price,....)

(161a) Does this present any problems?

[162] Is the contract burdensome in any aspect of the program?

• SOW (Statement of Work)
• Specifications
• DIDs (Data Item Descriptions)
• Contract parts
• Excessive customer involvement

[163] Is the required documentation burdensome?

• Excessive amount
• Picky customer
• Long approval cycle

b. Restrictions
[Does the contract cause any restrictions?]

[164] Are there problems with data rights?

• COTS software
• Developmental software
• Non-developmental items

c. Dependencies
[Does the program have any dependencies on outside products or services?]

[165] Are there dependencies on external products or services that may affect the product,
budget, or schedule?

• Associate contractors
• Prime contractor
• Subcontractors
• Vendors or suppliers
• Customer furnished equipment or software
B-21

3. Program Interfaces

a. Customer
[Are there any customer problems such as: lengthy document-approval cycle, poor
communication, and inadequate domain expertise?]

[166] Is the customer approval cycle timely?

• Documentation
• Program reviews
• Formal reviews

[167] Do you ever proceed before receiving customer approval?

[168] Does the customer understand the technical aspects of the system?

[169] Does the customer understand software?

[170] Does the customer interfere with process or people?

[171] Does management work with the customer to reach mutually agreeable decisions in a
timely manner?

• Requirements understanding
• Test criteria
• Schedule adjustments
• Interfaces

[172] How effective are your mechanisms for reaching agreements with the customer?

• Working groups (contractual?)
• Technical interchange meetings (contractual?)

[173] Are all customer factions involved in reaching agreements?

(Yes) (173.a) Is it a formally defined process?

[174] Does management present a realistic or optimistic picture to the customer?

If there are associate contractors

b. Associate Contractors
[Are there any problems with associate contractors such as inadequately defined or unstable
interfaces, poor communication, or lack of cooperation?]

[175] Are the external interfaces changing without adequate notification, coordination, or
formal change procedures?

[176] Is there an adequate transition plan?

(Yes) (176.a) Is it supported by all contractors and site personnel?
B-22

[177] Is there any problem with getting schedules or interface data from associate
contractors?

(No) (177.a) Are they accurate?

If there are subcontractors

c. Subcontractors
[Is the program dependent on subcontractors for any critical areas?]

[178] Are there any ambiguities in subcontractor task definitions?

[179] Is the subcontractor reporting and monitoring procedure different from the program’s
reporting requirements?

[180] Is subcontractor administration and technical management done by a separate
organization?

[181] Are you highly dependent on subcontractor expertise in any areas?

[182] Is subcontractor knowledge being transferred to the company?

[183] Is there any problem with getting schedules or interface data from subcontractors?

If program is a subcontract

d. Prime Contractor
[Is the program facing difficulties with its Prime contractor?]

[184] Are your task definitions from the Prime ambiguous?

[185] Do you interface with two separate prime organizations for administration and technical
management?

[186] Are you highly dependent on the Prime for expertise in any areas?

[187] Is there any problem with getting schedules or interface data from the Prime?

e. Corporate Management
[Is there a lack of support or micro management from upper management?]

[188] Does program management communicate problems to senior management?

(Yes) (188.a) Does this seem to be effective?

[189] Does corporate management give you timely support in solving your problems?

[190] Does corporate management tend to micro-manage?

[191] Does management present a realistic or optimistic picture to senior management?
B-23

f. Vendors
[Are vendors responsive to programs needs?]

[192] Are you relying on vendors for deliveries of critical components?

• Compilers
• Hardware
• COTS

g. Politics
[Are politics causing a problem for the program?]

[193] Are politics affecting the program?

• Company
• Customer
• Associate contractors
• Subcontractors

[194] Are politics affecting technical decisions?
B-24

Appendix C Glossary of Terms
acceptance criteria - The criteria that a system or component must satisfy to be accepted by
a user, customer, or other authorized entity. [IEEE-STD-610]

acceptance testing - Formal testing conducted to determine whether or not a system satisfies
its acceptance criteria and to enable the customer to determine whether or not to accept the
system. [IEEE-STD-610]

application domain - Refers to the nature of the application. Two examples are real-time flight
control systems and management information systems.

audit - An independent examination of a work product or set of work products to assess com-
pliance with specifications, standards, contractual agreements, or other criteria. [IEEE-STD-
610]

availability - The relative time that an operational product must be available for use. Usually
expressed as the ratio of time available for use to some total time period or as specific hours
of operation.

baseline - A specification or product that has been formally reviewed and agreed upon, that
thereafter serves as the basis for further development, and that can be changed only through
formal change control procedures. [IEEE-STD-610]

baseline management - In configuration management, the application of technical and admin-
istrative direction to designate the documents and changes to those documents that formally
identify and establish baselines at specific times during the life cycle of a configuration item.
[IEEE-STD-610]

benchmark - A standard against which measurements or comparisons can be made. [IEEE-
STD-610]

COTS (commercial off-the-shelf) - A type of non-developmental software that is supplied by
commercial sources.

change control - A part of configuration management that reviews, approves, and tracks
progress of alterations in the configuration of a configuration item delivered, to be delivered,
or under formal development, after formal establishment of its configuration identification.

configuration - In configuration management, the functional and physical characteristics of
hardware or software as set forth in technical documentation or achieved in a product. [IEEE-
STD-610]
CMU/SEI-93-TR-6 C-1

configuration management - A discipline applying technical and administrative direction and
surveillance to identify and document the functional and physical characteristics of a controlled
item, control changes to a configuration item and its documentation, and record and report
change processing and implementation status.

configuration management function - The organizational element charged with configuration
management.

configuration management system - The processes, procedures, and tools used by the devel-
opment organization to accomplish configuration management.

critical design review (CDR) - (1) A review conducted to verify that the detailed design of one
or more configuration items satisfy specified requirements; to establish the compatibility
among the configuration items and other items of equipment, facilities, software, and person-
nel; to assess risk areas for each configuration item; and, as applicable, to assess the results
of producability analyses, review preliminary hardware product specifications, evaluate pre-
liminary test planning, and evaluate the adequacy of preliminary operation and support docu-
ments. See also: preliminary design review; system design review. (2) A review as in (1) of
any hardware or software component.

customer - The person or organization receiving a product or service. There may be many dif-
ferent customers for individual organizations within a program structure. Government program
offices may view the customer as the user organization for which they are managing the
project. Contractors may view the program office as well as the user organization as custom-
ers.

design specifications - A document that prescribes the form, parts, and details of the product
according to a plan.

design-to-cost - Bidding a selected, reduced set of requirements to meet cost objectives.

detailed design - (1) The process of refining and expanding the preliminary design of a system
or component to the extent that the design is sufficiently complete to be implemented. See al-
so: software development process. (2) The result of the process in (1).

development computer - The hardware and supporting software system used for software de-
velopment.

development facilities - The office space, furnishings, and equipment that support the devel-
opment staff.
C-2 CMU/SEI-93-TR-6

development model - The abstract visualization of how the software development functions
(such as requirements definition, design, code, test, and implementation) are organized. Typ-
ical models are the waterfall model, the iterative model, and the spiral model.

development process - The implemented process for managing the development of the deliv-
erable product. For software, the development process includes the following major activities:
translating user needs into software requirements, transforming the software requirements
into design, implementing the design in code, testing the code, and sometimes, installing and
checking out the software for operational use. These activities may overlap and may be ap-
plied iteratively or recursively.

development sites - The locations at which development work is being conducted.

development system - The hardware and software tools and supporting equipment that will be
used in product development including such items as computer-aided software engineering
(CASE) tools, compilers, configuration management systems, and the like.

external dependencies - Any deliverables from other organizations that are critical to a prod-
uct’s success.

external interfaces - The points where the software system under development interacts with
other systems, sites, or people.

hardware specifications - A document that prescribes the functions, materials, dimensions,
and quality that a hardware item must meet.

implementation - The act of preparing a product for use by the customer.

integration - The act of assembling individual hardware and/or software components into a us-
able whole.

integration environment - The hardware, software, and supporting tools that will be used to
support product integration.

integration testing - Testing in which software components, hardware components, or both are
combined and tested to evaluate the interaction between them. See also: component testing;
interface testing; system testing; unit testing.

internal interfaces - The points where the software system under development interacts with
other components of the system under development.
CMU/SEI-93-TR-6 C-3

long-term issues - Issues of strategic importance to the project that can be compromised in
the heat of battle. Issues such as employee training and development, establishing and im-
proving processes and procedures, and similar activities are important to the long term viability
of the project and the organization.

non-developmental software (NDS) - Deliverable software that is not developed under the
contract but is provided by the contractor, the Government, or a third party. NDS may be re-
ferred to as reusable software, Government furnished software, or commercially available
software, depending on its source.

Orange Book - A security standard set by the U.S. Government as described in Federal Cri-
teria for Information Technology Security, Volume 1, December 1992.

preliminary design - The process of analyzing design alternatives and defining the architec-
ture, components, interfaces, and timing and sizing estimates for a system or component. See
also: detailed design.

procedure - A written description of a course of action to be taken to perform a given task.
[IEEE-STD-610]

process - A sequence of steps performed for a given purpose; for example, the software de-
velopment process. [IEEE-STD-610]

product integration - The act of assembling individual hardware and software components into
a functional whole.

re-engineering - The practice of adapting existing software artifacts or systems to perform new
or enhanced functions. Re-engineered artifacts may be substantially different from the existing
artifact.

reliability - The degree of dependability that an operational product must meet. Usually ex-
pressed as the average time to failure.

requirements analysis - (1) The process of studying user needs to arrive at a definition of sys-
tem, hardware, or software requirements. (2) The process of studying and refining system,
hardware, or software requirements.

reusing - Hardware or software developed in response to the requirements of one application
that can be used, in whole or in part, to satisfy the requirements of another application.

safety - The degree to which the software product minimizes the potential for hazardous con-
ditions during its operational mission.
C-4 CMU/SEI-93-TR-6

security - The degree to which a software product is safe from unauthorized use.

software architecture - The organizational structure of the software or module.

software life cycle - The period of time that begins when a software product is conceived and
ends when the software is no longer available for use. The software life cycle typically in-
cludes a concept phase, requirements phase, design phase, implementation phase, test
phase, installation and checkout phase, operation and maintenance phase, and, sometimes,
retirement phase. [IEEE-STD-610]

software requirement - A condition or capability that must be met by software needed by a user
to solve a problem or achieve an objective. [IEEE-STD-610]

software requirements specification (SRS) - Documentation of the essential requirements
(functions, performance, design constraints, and attributes) of the software and its external in-
terfaces. (IEEE-STD-1012-1986])

system integration - The act of assembling hardware and/or software components into a de-
liverable product.

system requirement - A condition or capability that must be met or possessed by a system or
system component to satisfy a condition or capability needed by a user to solve a problem.
[IEEE-STD-610]

system testing - Testing conducted on a complete, integrated system to evaluate the system's
compliance with its specified requirements. See also: component testing; integration testing;
interface testing; unit testing.

target computer - The hardware and supporting software system that will actually be used
when the software system is fielded.

TBDs - Requirements in formal requirements statements that are to be defined.

test specifications - A document that prescribes the process and procedures to be used to ver-
ify that a product meets its requirements.

traceability - The degree to which a relationship can be established between two or more prod-
ucts of the development process, especially products having a predecessor-successor or
master-subordinate relationship to one another. [IEEE-STD-610]

traceability mechanism - Processes and procedures (manual and/or automated) that map all
software components and artifacts from source requirements through test cases.
CMU/SEI-93-TR-6 C-5

transition plan - A plan (documented in the Computer Resources Integrated Support Docu-
ment) specifying how products are to be transitioned from development to support.

unit - (1) A separately testable element specified in the design of a computer software compo-
nent. (2) A logically separable part of a computer program. (3) A software component that is
not subdivided into other components. [IEEE-STD-610]

unit testing - Testing of individual hardware or software units or groups of related units. See
also: component testing; integration testing; interface testing; system testing.
C-6 CMU/SEI-93-TR-6

Index
A
acquisition 17, 21

concept definition phase of 21
high-risk item in 21
risk 21

action 4
control risk plan 5
manager 16
planned risk 5
planning 4, 21
prioritizing risk 4

analysis 1, 4, 17, 18, 21
requirement 18
risk 21

application 1, 4, 14, 17
TBQ 12, 8
domain 14

application process 1, 7, 17, 18
making modification to 17

attribute 1, 8
level 11
performance 11
taxonomic 1

B
briefing 13, 15

executive 13
intent of 15
project 15
result 15
to risk identification participant 15

C
class 1, 10

development environment 10
product engineering 10, 11
program constraint 11
taxonomic 8

client 17
organization 13, 14
participant 17

client team member 14, 15
code 10
communication 2, 5, 7, 10, 18, 19, 20

clearer communication of risk 20
effective 5
establishing 7

higher level 5
honest 19
issue 5
of software development risk 2
problem 2
risk 1, 5

concern 1, 2, 4, 7, 8, 11, 14, 15, 16, 19
consequence 4, 21

future 4
potential negative 2

constraint 11
external 11
operational 10
pragmatic 14
program constraint class 11
time constraint 12

contract 11
project 11

customer 2, 5, 10, 11, 21
external interface to 11
organization 5
reluctance on part of 2

D
data 17, 21

analysis of 21
collection of 17
conversion of 4
empirical 17
field 17
risk 4

design 10, 11
critical design review 18
effective 10
product 4
software 10

developer 2, 5, 14
organization 21

development 1, 8, 17
consistent framework for 8
environment 8
environment class 10
evolutionary 17
method 19
of software-dependent project 1
product 10
risk in software-dependent system 7
system 10
CMU/SEI-93-TR-6 Index-1

development activity 10
software 2

development life cycle 11
software 11
stage of software 11

development process 4, 10
software 14
working knowledge of 14

development project 5
civilian software 1
risk in software 7
software-dependent 21

direct control 8, 11
of local management 8
of project 11

E
environment 10, 14

development 8
development environment class 10
general 10
of non-attribution 14
project 10
work 10

event 20
asynchronous real-time 12
triggering event 4

experience 1, 2, 8, 12, 13, 17, 20, 21
in field testing TBQ 13
project manager 10

expert 2, 20
judgment 18
technical 17

F
feedback 15, 19

from client team member 17
from participant 19
from project 19
to participant 15

field test 1, 12, 13, 14, 17, 19, 20, 21
SEI team 14
TBQ process 12, 13
determining TBQ process 12
interview session 20
logistics 14
result of 21
Index-2 CMU/S
risk identification process 15
selection of project 13

follow-up probe question 11, 17
future work 1, 2, 21

G
government 2

contracting arena 14

I
interview 14, 15, 19, 20

completely structured 8
group 14, 19

reporting relationship in 19
size 19

interruption of 20
participant 14, 17, 20

selection 14
process 18
protocol 11, 14, 19, 20

core of 20
session 15
team 19

issue 1, 4, 7, 11, 14, 15, 18, 21
clarification 15, 20
classification 20
communication 5
equivalent 15
identification 20
identified 15, 16
previously unknown 19
revisiting 20
software development 1, 8
surfacing 19

life cycle 19, 21
of software development 19
software development 11
stage of software development 11

M
management activity 5, 15
management method 8, 10

continuous risk management method 1

management process 10
formal configuration 21
project 5
risk 5, 12
EI-93-TR-6

management process (Cont.)
suitable risk 19
TBQ risk identification and 12

method 1, 2, 7, 8, 10, 12, 17, 19, 21
acceptance of 22
active participant in further evolution of 22
continuous risk management 1
development 19
facilitation 14
focus of risk identification 7
integration of 21
risk identification 1, 7, 8, 17, 19
systematic 2
TBQ 8, 15, 19
taxonomy-based 19, 22

metric 5

N
non-judgmental question 7, 19

P
participant 11, 14, 15, 19, 20

active 22
briefing to 15
client 17
feedback from 19
feedback to 15
interview 14, 17, 20
issue identification by 20
risk identification 15
selection 13, 14

peer 14, 19
performance 11, 12

attribute 11

personnel 13, 15
coordination of 14
management 10
project 2, 712, 14, 15, 17, 19
software 2

plan 4, 5
contingency 4
control risk action 5
for specific risk 4
integrated risk management 4
risk mitigation 4
variation from 5

probe question 11
context-sensitive 15

follow-up 11

probing 11
follow-up 14

process 1, 13, 14, 15, 16, 17, 19
application 1, 7, 17, 18
determining TBQ field test 12
development 10, 4
field test risk identification 15
interview 18
management 10
risk identification 15, 7
risk management 12, 5
software development 14
suitable risk management 19
TBQ field test 12, 13
working knowledge of 14

product 8, 10
design 4
development 10
domain 10
requirement 10
software 1, 10, 2

product engineering 8
product engineering class 10, 11

project management 2, 5, 14, 19
attention of project management 2
process 5
structure 2

project manager 4, 13, 14, 15, 16, 19
experience 10

project personnel 2, 7, 12, 14, 15, 17, 19
additional coverage of 19
risk from 17
selected 15

project risk 12, 19, 21
potential 21
surfacing project 1

protocol 14
interview 11, 19, 20

Q
question 1, 7, 8, 11, 14, 15, 17

at attribute level 11
clarity in 11
context-sensitive probe 15
follow-up probe 11

question (Cont.)
CMU/SEI-93-TR-6 Index-3

non-judgmental 7, 19
response to 11, 23
starter 11
suggesting additional 17
taxonomic group 17

questionnaire 1, 7, 11, 14, 17
derivation 17
taxonomy-based 1, 11

R
reporting relationship 14, 19
requirement 10

analysis 18
element 11
product 10

risk 1, 2, 4, 5, 7, 11, 14, 15, 16, 17, 18, 19, 20,
21

acquisition 21
analysis 21
as uneasy feeling 2
assessment 17
avoidance culture 14
classification of 15
communication 1, 5, 20
data 4
decision-making information 4
discovering 4
eliciting 14
evaluation of status of 4
impact of 4
in software development project 7
inevitability of 2
information 4
known 7
metric 4
mitigation plan 4
new 21
orientation 2
prioritizing action 4
project 12, 19, 21
repeatable identification of 1, 21
software 17
software development 1, 2, 8, 7
unknowable 7
unknown 7

risk identification 1, 2, 5, 7, 13, 14, 15, 20, 21
comprehensive 14
duration of 15
effective 16, 7
Index-4 CMU/S
field test process 15
formal 21
informal 21
interview protocol 14
participant 15
process 15, 7
repeatable method of 7
TBQ 12
thorough 12, 14

risk identification method 1, 7, 8, 17, 19
focus of 7
purview of 7
repeatable 5
taxonomy-based 22

risk identification session 14, 15
risk identification team 12, 17, 19
risk management 1, 2, 8, 21

comprehensive program 21
consistent 7
continuous method 1
control aspect of 1
establishing 1, 21

risk management process 5, 12

S
schedule 2, 10, 11, 14, 15

interview 20
of software product 2

software 2, 8, 10, 20
design 10
developing 1, 21
engineering 10
engineering process group 22
literature 17
personnel 2
process improvement network 22
project 14, 2
risk 17
risk management 2
specific domain 11
taxonomy 8
translation of design into code 10

software development 7, 10, 17, 19
activity 2
communication of risk 2
full breadth of risk 8
industry 22

software development (Cont.)
EI-93-TR-6

issue 1, 8
life cycle 11
life cycle of 19
managing risk 2
process 14
project manager experience in 10
published literature on 17
risk taxonomy 8
SEI taxonomy of risk 1
stage of life cycle 11
terminological network for 17
working knowledge of process 14

software development project 1, 7, 21
active 17, 21
civilian 1
risk in 7

software development risk 1, 2, 7, 8
communication of 2
full breadth of 8
management 2
managing 2
perspective 8
SEI taxonomy of 1
taxonomy 8

software development taxonomy 1, 8
definition of 2

software product 1, 2, 10
software risk 17
software risk management 2
staff 11, 19

across project hierarchy 19
managerial 8
technical 7

starter question 11
answer to starter question 11

T
taxonomic group 7, 20

risk in 7

taxonomy 1, 8, 17, 20
brief description of 8
complete taxonomy 8
detailed structure 8
software 1, 8
consensual classification 15
definition of 2
taxonomy group 15

TBQ 1, 2, 7, 11, 12, 14, 15, 20, 21
application 12, 8
coverage of 20
experience in field testing 13
field testing 12, 13
fuller coverage of 20
implication for 12
instrument 7
method 15, 19, 8
next version of 12
transition of 14

team 14, 17
experienced member 14, 20
full-fledged member of 17
interview 19
risk identification 12, 17, 19
SEI identification 14
selection 13, 14
training 15

team member 14, 15, 20
client 14, 15
feedback 17
training 14

team selection 13, 14
training 13, 14, 20

crucial part of 20
key aspect of team 15
prior 20
team 15

translation 10
of software design into code 10

triggering event 4, 5
CMU/SEI-93-TR-6 Index-5

Index-6 CMU/S
EI-93-TR-6

13a. TYPE OF REPORT

Final

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

FIELD SUB. GR.GROUP

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

CMU/SEI-93-TR-6 ESC-TR-93-183

Taxonomy-Based Risk Identification

June 1993 24 & appendix

risk assessment, risk identification, software risk, taxonomy-based question-
naire

Marvin J. Carr, Suresh L. Konda, Ira Monarch, F. Carol Ulrich, Clay F. Walker
19. ABSTRACT (continue on reverse if necessary and identify by block number)

This report describes a method for facilitating the systematic and repeatable identification of risks
associated with the development of a software-dependent project. This method, derived from pub-
lished literature and previous experience in developing software, was tested in active government-
funded defense and civilian software development projects for both its usefulness and for improving
the method itself. Results of the field tests encouraged the claim that the described method is useful,
usable, and efficient. The report concludes with some macro-level lessons learned from the field
tests and a brief overview of future work in establishing risk management on a firm footing in software
development projects.
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

(please turn over)

ABSTRACT — continued from page one, block 19

	Table of Contents
	List of Figures
	1 Introduction
	2 The Context
	3 The Risk Identification Method
	3.1 The Software Development Risk Taxonomy
	3.1.1 Product Engineering Class
	3.1.2 Development Environment Class
	3.1.3 Program Constraints Class

	3.2 The Taxonomy-Based Questionnaire (TBQ)
	3.3 Field Testing the TBQ
	3.3.1 Management Commitment
	3.3.1.1 Executive Commitment
	3.3.1.2 Project Selection
	3.3.1.3 Interview Participant Selection

	3.3.2 Team Selection and Training
	3.3.3 Risk Identification
	3.3.4 Identification Conclusion

	4 Technical Approach
	4.1 Taxonomy-Based Questionnaire Derivation
	4.2 Evolutionary Development

	5 Lessons Learned
	5.1 The Method Is Effective and Efficient
	5.2 Process Is Important
	5.3 Facilitation Skills Can Be Transitioned

	6 Conclusions
	References
	Appendix A Taxonomic Group Definitions
	Appendix B Taxonomy-Based Questionnaire
	Appendix C Glossary of Terms

