
15-413: Introduction to Software Engineering

Jonathan Aldrich

Assignment 8: Architecture & Hoare Logic

Due: Monday, November 7, 11:30am (hardcopy at beginning of class)
60 points

This assignment is a group assignment. Each project group should turn in one response
to each part, with all the names of the group members.

1. Architectural Decomposition (20 points)

a) Provide a graphical architectural decomposition of your system into runtime
components and connectors. To answer this question, you can use any graphical
representation you want. You can use a boxes-and-lines diagram. However, make
sure to include a legend. Follow the documentation best practices discussed in
class. Note: in this question, you are asked to describe a feasible architecture that
meets your project’s requirements and that you can implement within a semester.

Note that your architecture may have similarities to the module decomposition
you defined in Assignment 7. Two differences you should pay attention to is that
(1) a component and connector view of architecture shows run-time components;
there may or may not be a one-to-one correspondence between run-time
components (e.g. objects, processes, threads) and static modules (e.g. Java
packages or C files). (2) a component and connector view of architecture includes
a special focus on connectors, so you should pay attention to whether your system
has conceptual connectors that go beyond a simple call-return module binding.
E.g., look for connectors that denote network connections, shared files, pipes, a
shared data store, a database, an event bus, etc.

b) Supplement your informal diagram with explanations. Use the format shown

below. For each component, provide a table, listing:

Component: This is the component name, e.g., Component A
Responsibilities: This is a list of the component’s responsibilities (that is, the

functionality it implements). Each component should have at
least one responsibility:

• Responsibility 1
• Responsibility 2
• …

Properties: This is a list of the component’s architectural properties: e.g.,
ResponseTime <= 100ms. Annotate your architecture with
properties that correspond to at least one quality attribute (see

below).
Collaborators: This is a list of the other components that this component

either provides services to, or requires services from. Be
specific about that.

• Component B: requires x, y, z
• Component C: provides u, v, w
• Component D: instantiates this component

Rationale: This is the reason as to why you chose to have this as a
separate component. For example, it is on a different host
than other components, or it hides some information that is
likely to change.

c) Are there any other possible architectures? What made you decide on your

solution over these other possible solutions? (E.g., discuss any trade-offs you
made and why.)

2. Architectural Styles and Analyses (10 points)

a) From the architectural styles covered in class, which one most closely matches
your architecture? If the system does not obey any particular style, explain the
reasons why none of the canonical styles applies, or explain how your architecture
uses elements from more than one style. Discuss the consequences or the
tradeoffs of deviating from the closest canonical style.

b) Define at least two architectural constraints (invariants) on the architecture. For

example, a structural constraint might restrict the number of instances, or the arity
of a connection, or which components can talk to which other components. For
each constraint, explain why it is important. You can use any predicate logic
notation you want, as long as it’s understandable. Briefly describe what notation
you’re using.

c) Consider three quality attributes and for each one, discuss whether and how the

proposed architecture promotes it or detracts from it. Be specific. Note: Some of
the quality attributes you choose in this question may not necessarily be
requirements in your project (e.g., portability to a different platform).

d) Discuss briefly what kinds of architectural-level analyses would be helpful for the

specific architecture that you described and under what circumstances. For
example, check for deadlocks in a concurrent system (and under what conditions
such a deadlock might happen).

3. Hoare Logic (15 points)

Use Hoare Logic to prove total correctness (i.e., including termination) of the following
binary search code. Use the notations from class and the lecture slides. Show all of your
work. You must explicitly state the loop invariant and variant function separately from
the main body of your proof. Your proof must show all of the intermediate predicates
and where they go in the source code. Finally, you must show how each proof obligation
is discharged as a series of steps, and justify each step with a 2-3 word explanation (e.g.
arithmetic simplification, by assumption, etc.) as was done in class.

{ N > 0 && (∀k | 1≤k<N • a[k-1] < a[k]) }
i := 0
j := N-1
m := (i+j)/2
while (i ≠ j) do
 if (a[m] < V)
 i := m+1
 else
 j := m
 m := (i+j)/2
end

{ (∃k | 0≤k<N • a[k]=V) ⇒ (a[m]=V) }

4. ESC/Java 2 (15 points)

Download ESC/Java 2 from:
http://secure.ucd.ie/products/opensource/ESCJava2/download.html

Follow the instructions in README.release to install the system. You may have to
install Java version 1.4 (Java 5.0 won’t work) if you haven’t already, you can find this at:
http://java.sun.com/j2se/1.4.2/download.html

If you are working from Windows, you will need to modify escj.bat in the obvious way to
include the appropriate paths for your system.

Now take the file Stack.java and StackCheck.java from the class website. Run ESC/Java
2 on both files together. Add pre- and post-conditions and invariants to Stack.java and
fix any bugs you find in the code, until ESC/Java runs on both files without producing
any warnings. You may not edit StackCheck.java. Nor may you remove the annotations
that are already present in Stack.java.

Turn in a printout of your edited version of Stack.java. Also turn in a printout of
ESC/Java 2’s output when run on the two files.

