
Copyright © 2016 Elsevier and Jonathan Aldrich

Code Improvement, Day 2:
Global Optimization

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 17

Prof. Jonathan Aldrich



Value Numbering & Aliasing

• Aliasing: x and y might refer to the same location
– Distinguish x and y must alias from x and y may alias

• Concerns
– If x may alias y:

• store to x  remove knowledge of y
 can’t move below a load of y

– If x must alias y:
• store to x  update knowledge of y in table
• load of x  can replace with existing load of y



Optimization Correctness

• Criterion: does the optimized program compute the 
same result as the original program, for all inputs?

• Soundness theorem: If p ~> p’ then input I, p(I) = 
p’(I)

– You’ll prove a version of this for a simple constant 
propagation analysis in Homework 8



Analysis Correctness

• Optimizations often rely on analysis information
– Value numbering: correspondences between expressions and 

values in registers

• Rough guide to correctness: when you replace 
symbolic information in the analysis with concrete 
information from particular executions, does the result 
hold?

– Becomes a lemma in the proof of soundness for the “client” 
optimization



Redundancy Elimination in Basic Blocks



Global Redundancy and 
Data Flow Analysis
• We now concentrate on the elimination of 

redundant loads and computations across the 
boundaries between basic blocks

• We translate the code of our basic blocks into 
static single assignment (SSA) form, which will 
allow us to perform global value numbering

• Once value numbers have been assigned, we shall 
be able to perform 
– global common subexpression elimination
– constant propagation
– copy propagation



Global Redundancy and 
Data Flow Analysis
• In a compiler both the translation to SSA form 

and the various global optimizations would be 
driven by data flow analysis.
– We detail the problems of identifying 

• common subexpressions
• useless store instructions

– We will also give data flow equations for the 
calculation of reaching definitions, used to move 
invariant computations out of loops

• Global redundancy elimination can be structured 
in such a way that it catches local redundancies as 
well, eliminating the need for a separate local pass



Value Numbering and SSA Form

• Value numbering, as introduced earlier, assigns a 
distinct virtual register name to every 
symbolically distinct value that is loaded or 
computed in a given body of code
– It allows us to recognize when certain loads or 

computations are redundant. 

• The first step in global value numbering is to 
distinguish among the values that may be written 
to a variable in different basic blocks
– We accomplish this step using static single assignment 

(SSA) form



SSA Form

• For example, if the instruction v2 := x is 
guaranteed to read the value of x written by the 
instruction x3 := v1, then we replace v2 := x
with v2 := x3

• If we cannot tell which version of x will be read, we 
use a hypothetical function ϕ to choose among the 
possible alternatives
– we won’t actually have to compute ϕ-functions at run time

• the only purpose is to help us identify possible code 
improvements

– we will drop them (and the subscripts) prior to target code 
generation



SSA Form - Example

Local variables t and i are 
used across blocks.

We rename the variable at 
each load or assignment with 
an index.

At control flow merges, we 
add a ϕ-function merging 
them, and use the index for 
the merged variable.



• With flow-dependent values determined by ϕ-
functions, we are now in a position to perform 
global value numbering
– As in local value numbering, the goal is to merge any 

virtual registers that are guaranteed to hold 
symbolically equivalent expressions

– In the local case, we were able to perform a linear pass 
over the code

– We kept a dictionary that mapped loaded and 
computed expressions to the names of virtual registers 
that contained them

Global Value Numbering



• This approach does not suffice in the global case, 
because the code may have cycles
– The general solution can be formulated using data flow
– It can also be obtained with a simpler algorithm that 

begins by unifying all expressions with the same top-level 
operator
• In the end, repeatedly separates expressions whose operands are 

distinct
• It is quite similar to the DFA minimization algorithm of Chapter 

2

• We perform this analysis for our running example 
informally

Global Value Numbering



Global Value Numbering

Reuse registers 
v1 and v2 from 
Block 1

Reuse v1 
and v17



• Many instances of data flow analysis can be cast 
in the following framework: 
1. four sets for each basic block B, called InB, OutB, GenB, 

and KillB; 
2. values for the Gen and Kill sets; 
3. an equation relating the sets for any given block B; 
4. an equation relating the Out set of a given block to the 

In sets of its successors, or relating the In set of the 
block to the Out sets of its predecessors; and (often) 

5. certain initial conditions

Global Redundancy and 
Data Flow Analysis



• The goal of the analysis is to find a fixed point of 
the equations: a consistent set of In and Out sets 
(usually the smallest or the largest) that satisfy 
both the equations and the initial conditions
– Some problems have a single fixed point

– Others may have more than one
• we usually want either the least or the greatest fixed point 

(smallest or largest sets)

Global Redundancy and 
Data Flow Analysis



• In the case of global common subexpression 
elimination, InB is the set of expressions (virtual 
registers) guaranteed to be available at the 
beginning of block B
– These available expressions will all have been set by 

predecessor blocks
– OutB is the set of expressions guaranteed to be 

available at the end of B
– KillB is the set of expressions killed in B: invalidated by 

assignment to one of the variables used to calculate the 
expression, and not subsequently recalculated in B

– GenB is the set of expressions calculated in B and not 
subsequently killed in B

Global Redundancy and 
Data Flow Analysis



• The data flow equations for available 
expression analysis are:

Global Redundancy and 
Data Flow Analysis

• Our initial condition is In1 = : no expressions are 
available at the beginning of execution



• Available expression analysis is known as a 
forward data flow problem, because information 
flows forward across branches: the In set of a 
block depends on the Out sets of its predecessors
– We will see an example of a backward data flow 

problem later 

• We calculate the desired fixed point of our 
equations in an inductive (iterative) fashion, much 
as we computed first and follow sets in Chapter 2

• Our equation for InB uses intersection to insist 
that an expression be available on all paths into B
– In our iterative algorithm, this means that InB can only 

shrink with subsequent iterations

Global Redundancy and 
Data Flow Analysis



Example of Available Expressions 
Analysis

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
v8 := c / 2



Exercise: Apply global value numbering and 
available expressions to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v3+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3



Exercise: Apply global value numbering and 
available expressions to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v1 := a*2
v4 := v1+3
goto endif

endif:
v1 := a*2
v7 := v1+3
return v7

else:
b := v1
v4 := v1+3

after renamings



Global Redundancy and 
Data Flow Analysis



Global Redundancy and 
Data Flow Analysis



• We turn our attention to live variable analysis -
very important in any subroutine in which global 
common subexpression analysis has eliminated 
load instructions

• Live variable analysis is a backward flow problem
• It determines which instructions produce values 

that will be needed in the future, allowing us to 
eliminate dead (useless) instructions
– in our example we consider only values written to 

memory and with the elimination of dead stores
– applied to values in virtual registers as well, live 

variable analysis can help to identify other dead 
instructions

Global Redundancy and 
Data Flow Analysis



Running live variable analysis and 
dead code elimination

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
return c / 2



Exercise: Apply live variable analysis and 
dead code elimination to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v1+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3



Global Redundancy and 
Data Flow Analysis


