Code Improvement, Day 2:
Global Optimization

17-363/17-663.: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 17

Copyright © 2016 Elsevier and Jonathan Aldrich

Value Numbering & Aliasing

* Aliasing: x and y might refer to the same location
— Dastinguish x and y must alias from x and y may alias

* Concerns
— If x may alias y:
e storetox —> remove knowledge of y
—> can’t move below a load of y
— If x must alias y:

e store to x —> update knowledge of y in table
 Jload ofx —> can replace with existing load of y

Optimization Correctness

» Criterion: does the optimized program compute the
same result as the original program, for all inputs?

* Soundness theorem: If p ~> p’ then Vinput I, p(I) =
p'(1)
— You’ll prove a version of this for a simple constant
propagation analysis in Homework 8

Analysis Correctness

* Optimizations often rely on analysis information

— Value numbering: correspondences between expressions and
values 1n registers

* Rough guide to correctness: when you replace
symbolic information in the analysis with concrete
information from particular executions, does the result
hold?

— Becomes a lemma 1n the proof of soundness for the “client”
optimization

Block 2:
Vid =t
vid:=n
vie:=vid + 1
V17 =1
viB =vl16 - w17
vi9=v13 x w18
v21 := v19 div v17
vZZ = A
v2h :=v1T << 2
V26 =v22 + v2b
#y26 = v21

Block 1: v31:=vi4 - v17
sp=sp-8 v33:=v3l<<2
vi=m ——n v34 1= v22 + v33
ni=vl #*v3d = v21
vi=r —A V38 = v17 + 1
Az=v2 t=v21
#2 =1 i -=v38
vBi=vleec2 goto Block 3
vi:=vZ+ vl
=yd:=1
t:=1
=1 Block 3:
goto Block 3 V39 = |

vadl=n

vi2 = vd > 1

Block 4: va3 = v39 w42
sp=5sp+8 if w43 goto Block 2
goto =Ir else gota Block 4

&

fiﬂlll'l! |74 Control flow graph for the combinations subroutine after local redundancy
elimination and strength reduction. Changes from Figure C-17.2 are shown in boldface type. &

ELSEVIER

Global Redundancy and
Data Flow Analysis

e We now concentrate on the elimination of
redundant loads and computations across the
boundaries between basic blocks

* We translate the code of our basic blocks into
static single assignment (SSA) form, which will
allow us to perform global value numbering

* Once value numbers have been assigned, we shall
be able to perform
— global common subexpression elimination
— constant propagation
— Ccopy propagation

Global Redundancy and
Data Flow Analysis

In a compiler both the translation to SSA form
and the various global optimizations would be
driven by data flow analysis.

— We detail the problems of identifying

e common subexpressions
e useless store instructions

— We will also give data flow equations for the
calculation of reaching definitions, used to move
invariant computations out of loops

Global redundancy elimination can be structured

in such a way that it catches local redundancies as

well, eliminating the need for a separate local pass

.{ "_u.l.
TR e B e
e 1 Y
e

Value Numbering and SSA Form

* Value numbering, as introduced earlier, assigns a
distinct virtual register name to every
symbolically distinct value that 1s loaded or
computed 1n a given body of code
— It allows us to recognize when certain loads or

computations are redundant.

* The first step 1n global value numbering is to
distinguish among the values that may be written
to a variable in different basic blocks

— We accomplish this step using static single assignment
(SSA) form

SSA Form

* For example, if the mstruction v2 := x1s
guaranteed to read the value of x written by the
instruction x3 := v1,thenwereplace vz := x
with v2 := x3

e [If we cannot tell which version of x will be read, we
use a hypothetical function ¢ to choose among the
possible alternatives

— we won’t actually have to compute ¢-functions at run time

* the only purpose 1s to help us 1dentify possible code
Improvements

— we will drop them (and the subscripts) prior to target code
generation

SSA Form - Example

Block 1
sp=5s5p—8
vl =D —n
n=vl
vZ2 =T11 — A
A=v2
2 =1
VB =wl << 2
v =vZ +v3
o3 =1
FI =1
iyi= 1

goto Block 3

Block 2:
vi13 = t3
vid :=n
vig=vid +1
V17 =iy
viB i=v16 —v17
vig:i=v13 = v18
V21 :=v19div v17
V22 = A

v2h =vi7 << 2
V26 =v22 + vZh

Block 4:
50 =5p+8
goto =Ir

w26 = v21

v31l i=v14 —v17

vadi=val << ?

vad = w22 + v33

w34 = v21

vag8 i=v17 +1

?2:: vz1

iz = v38

goto Block 3
Block 3:

Ta —— ¢t?.[, '[2'

|3 e ¢[|'|; |2]

v3g = 1|3

vadl:=n

vid2 = vAD >> 1

vdd =v39 <42

if w43 goto Block 2
else goto Block 4

Figure I1.5 Control flow graph for the combinations subroutine, in static single assignment
(SSA) form. Changes from Figure C-17.4 are shown in boldface type.

Local variables t and 1 are
used across blocks.

We rename the variable at
each load or assignment with
an index.

At control flow merges, we
add a ¢-function merging
them, and use the index for
the merged variable.

Global Value Numbering

» With flow-dependent values determined by ¢-
functions, we are now 1n a position to perform
global value numbering

— As 1n local value numbering, the goal 1s to merge any
virtual registers that are guaranteed to hold
symbolically equivalent expressions

— In the local case, we were able to perform a linear pass
over the code

— We kept a dictionary that mapped loaded and
computed expressions to the names of virtual registers
that contained them

Global Value Numbering

* This approach does not suffice 1n the global case,
because the code may have cycles
— The general solution can be formulated using data flow

— It can also be obtained with a simpler algorithm that
begins by unifying all expressions with the same top-level
operator

* In the end, repeatedly separates expressions whose operands are
distinct

« It is quite similar to the DFA minimization algorithm of Chapter
2

* We perform this analysis for our running example
informally

Block 2:
vi3 =1,
vid:=n
vig=vid+1
v17:= iy
V1B =v16 - v17
vig=v13 = v18
v21 :=v18div v17

Block 1:
sp=s5p—8
vl =l —n
n-=v1
v# =Tl — A
A=vy2
a2 =1
VB =v1l << 2
V3 =vZ +vB8
=8 =1
‘t1 =1
i1 =1
goto Block 3
Block 4:
sp =50+ 8
goto =|r

Figure 11.5 Control flow graph for the combinations subroutine, in static single assignment
gu
(S5A) form. Changes from Figure C-174 are shown in boldface type.

v2Z = A

V25 =v17 << 2

V26 = w22 + v2h

w5 =v21

val :=vi4 - w17

va3di=val <=2

vad = w22 4+ v3a3

w3 = v

V38 =v17 +1

ty = v21

iz =v38

goto Block 3
Block 3:

L= j‘.’ti.tzl

ig = ¢lig. i)

v39:=i,

vaA0:=n

vaAZ =vA0 >> 1

vd3 =v39 <v4Z2
if w43 goto Block 2
else goto Block 4

Reuse registers

v1 and v2 from
Block 1

Block 2;
yvid = 13
vii=n
vieg:=vl+1
V17 =g

V1B =vi16 - v17
v18 =v13 = v18
v21 =vi8divvi7

Block 1:
sp=5p—8
vi=r0 —n
n:=vl
v2 =Tl — 4
A=v2
sy =1
VB =v] << 2
vl =2 +vB
w4 =1
t'l 5= |
i1 G |
goto Block 3

Bilock 4:
Sp.=5p+8
goto =

vz:=A
V2B =17 << 2
V26 = vZ + v25
w26 = vZ1
v3l:=vl1-v17
V33 =v31l << 2
vid ;= v2 +v33
wy3d =y
vaB =v1T + 1
t; 1= v21
ip:=v38
goto Block 3
Block 3:
T.3 =3 “1, tzi
i3'.: “1- ilJ
vi7:=ig
vi:i=n
vz =vl >>1

vd3 = vl17 < vd2
if w43 goto Block 2
else goto Block 4

Reuse vl

and v17

Figlll‘ﬂ I17.6 Control flow graph for the combinations subroutine after global value num-
bering. Changes from Figure C-175 are shown in boldface type,

ELSEVIER

Global Redundancy and
Data Flow Analysis

Many 1nstances of data flow analysis can be cast
in the following framework:

1.

2.
3.

four sets for each basic block B, called Ing, Outy, Genyg,
and Killg;

values for the Gen and Kill sets;
an equation relating the sets for any given block B;

an equation relating the Out set of a given block to the
In sets of 1ts successors, or relating the /n set of the
block to the Out sets of its predecessors; and (often)

. certain 1nitial conditions

Global Redundancy and
Data Flow Analysis

The goal of the analysis 1s to find a fixed point of
the equations: a consistent set of /n and Out sets
(usually the smallest or the largest) that satisty
both the equations and the 1nitial conditions

— Some problems have a single fixed point

— Others may have more than one

we usually want either the least or the greatest fixed point
(smallest or largest sets)

Global Redundancy and
Data Flow Analysis

* In the case of global common subexpression
elimination, Ing1s the set of expressions (virtual
registers) guaranteed to be available at the
beginning of block B

— These available expressions will all have been set by
predecessor blocks

— Qutp 1s the set of expressions guaranteed to be
available at the end of B

— Killg1s the set of expressions killed in B: invalidated by
assignment to one of the variables used to calculate the
expression, and not subsequently recalculated in B

— Geng1s the set of expressions calculated in B and not
subsequently killed in B

Global Redundancy and
Data Flow Analysis

* The data flow equations for available
expression analysis are:

Outp = Genpg U (Inp ~ Killp)
Ing = ﬂ Out 4

predecessors A of B

* Our initial condition is In, = J: no expressions are
available at the beginning of execution

Global Redundancy and
Data Flow Analysis

* Available expression analysis 1s known as a
forward data flow problem, because information
flows forward across branches: the In set of a
block depends on the Out sets of 1ts predecessors
— We will see an example of a backward data flow

problem later

* We calculate the desired fixed point of our
equations 1n an inductive (iterative) fashion, much
as we computed first and follow sets in Chapter 2

* QOur equation for /ng uses intersection to insist

that an expression be available on all paths into B

— In our 1terative algorithm, this means that /n, can only
shrink with subsequent iterations

l

header:
vS:=b*?2
if v4 <7 goto end

body:

vb:=b *2
a:=vo6
vi=a+1
b:=v7

goto header ® 4

ELSEVIER

Exercise: Apply global value numbering and
available expressions to this program

start:
vl :=a*2
v2 :=Db-1

if vl <v2 goto else

— /\

a:=v2 else:
v3 = a*2 b:=vl
v4 :=v3+3 vy =vl+3
goto endif
endif:
v6 = a*2
V7 :=v6+3
return v7/

Exercise: Apply global value numbering and
available expressions to this program

start:
vl :=a*2
v2 :=b-1
if v <v2 goto else after renamings
then: /\
a:=v2 else:
vl ;= a*2 b:=vl
v4 =vI+3 v4 :=v1+3
goto endif
endif:
vl :=a*2
v7 =vI1+3
return v7/

Block 2:
vig =vl +1
v18 =v18 - w17
W18 =v13 x vi8
V21 -= v19 div vi7
V2B =17 <2
V26 =vZ 4+ vZh

e 26 = v21
Si=sp—a V31 =vl - v17
it V33 = v31 << 2
.=] V34 = vZ + a3
i L 34 = y21

A=1 V38 =v17 + 1
ner=1 t-=v21

wa f:‘u"l < 7 o i
= vi3 = v21

sl v17 := v38

*_';: goto Block 3
|

vid =1
vi7l =1
goto Block 3

Block 3:
VA2 =W =1
Block 4: vd3 =17 <v42
sp=sp+8 if w43 goto Block 2
goto =Ir = VR else goto Block 4

ﬁEI.H'E |7.1 Control flow graph for the combinations subroutine after performing global

common subexpression elimination. Mote the absence of the many load instructions of Fig-

ure C-17.6. Compensating register—register moves are shown in boldface type. ; %\ A
£

ELSEVIER

W1 =vZ2 + w3

a=wvl

v =vbB xvb
a=vd

\w =

JAR

[\

V1 =vZ +v3

=

V1 =w2 + w3
a=vl
VT =l

'

vl =vZ +v3

:

Figllfl‘ |7.8 Splitting an edge of a control flow graph tw eliminate a redundant load (top) or a partially redundant compu-

tation (bottom).

ELS

EVI

ER

Global Redundancy and
Data Flow Analysis

We turn our attention to /ive variable analysis -
very important in any subroutine in which global
common subexpression analysis has eliminated
load 1nstructions

Live variable analysis 1s a backward flow problem

It determines which instructions produce values
that will be needed in the future, allowing us to
eliminate dead (useless) instructions

— 1n our example we consider only values written to
memory and with the elimination of dead stores

— applied to values in virtual registers as well, live
variable analysis can help to 1dentify other dead
Instructions

Running live variable analysis and
dead code elimination

start:

vl =a+1
v2:=b*2
v3yi:=v2-3
vd:=c/2

l

header:
vi:=b*?2 —>
if v4 <7 goto end

body:

vb:=b *2
a:=vob

v/ =a+1
b:=v7
goto header

end:
returnc/ 2

Exercise: Apply live variable analysis and
dead code elimination to this program

start:
vl :=a*2
v2 :=Db-1

if vl <v2 goto else

— /\

a:=v2 else:
v3 :=a*2 b:=vl
v4 =v1+3 vy =vl+3
goto endif
endif:
v6 = a*2
V7 :=v6+3
return v7/

Block 2: Block 2:
vi6:=vl +1 vie :=v1 + 1
w18 = w18 — w17 v18 :=v16 —v17
w19 :=v13 x_ﬂE v19:=v13 x v18
vZ21 =v19 divwvl7 v21 :=v19divvl7
v2h =17 <2 v25 '=v17 << 2
ekt V28 =vZ + vZh v26 :=v2 + v2b
- 26 = v21 *¥v26 = v21
Sp—=sp—= vil =v1 - w17 31 :=vl =v17
it e v31 :=vl —-v
= Vil =v31 =« 2 . v33:=v31 << 2
'ur2" __":1 - V34 = vZ 4+ va3 BIOCk11- . v34 :=v2 +v33
i w34 = v21 vi=r . *v34 1= v21
== V3B =v17 + 1 V2 =1l -——A TR
2 = 1 2 -
——— *v2:=1 =
vB =yl <c? : vi3u=v21
—=—v3a— v8:=vl << 2 17 =
vl =vZ +vEB v17 := v38
i v13 = v21 vO:=Vv2 +v8 goto Block 3
ByE s v17 = v38 #v9 = 1
Se— goto Block 2 vi3:=1
i NAZ 2=
= oto Block 3 >
vi7 =1 T l g Block 3:
goto Block 3 » Block 3 v42 :=vl >> 1
. va43 :=v17 <v42
¥as St Block 4: if v43 goto Block 2
Block 4: va3 I=w17 £va2Z > oto Ir else gto Block 4
Pt if va3 goto Block 2 g : g
goto =Ir < glse goto Block 4

Figure 17.9 Control flow graph for the combinations subroutine after perform
variable analysis. Starting with Figure C-17.7, the compiler has eliminated all stores to
and i. It has also dropped the changes to the stack pointer that used to appear in the sut
prologue and epilogue: we don't need space for local variables anymore.

ELSEVIER

Figm 1.1 Control flow graph for the combinations subroutine after
common subexpression elimination. MNote the absence of the many load |
ure C-17.6. Compensating register—register moves are shown in boldface type!

