
Introduction to Rust
Ian McCormack

1

Jonathan
Aldrich

Joshua
Sunshine

Timothy
Zhou

2

Ian
McCormack

3

Why should I use Rust?

4

Rust’s mascot is a crab, and crabs are awesome.

“Ferris”

Rust is popular and widely used in production.

5

Chosen as the “most loved” language in the Stack Overflow’s annual
developer survey for the last six years.

6

Rust is
energy,
time, and
memory
efficient.

7

What is memory safety?

8

Rust’s main selling point is
strong static memory safety.

9

Garbage collection supports dynamic memory safety.

Tracing garbage collection treats memory as a reachability graph, and
periodically eliminates nodes that are unreachable.

Reference counting is continuous; objects with no referents are freed.

Java and Go use tracing garbage collection.

Check out Crafting
Interpreters!

10

Garbage collection causes runtime overhead.

Go

Rust

Performance of Discord’s Read States Service

11

Rust has similar performance, energy
efficiency, and memory usage to C, with
static memory safety guarantees.

12

Rust
● Basic language features
● Ownership & the borrow checker
● Generic types

13

Rust Resources

The Rust Programming Language — https://doc.rust-lang.org/book/

A tutorial on every aspect of Rust; a great starting point.

The Rustonomicon — https://doc.rust-lang.org/nomicon/

Explains advanced features, such as ‘unsafe’ and foreign function use.

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/nomicon/

14

Basic language features:
Why should we talk about this?

15

Mutability

Variables are immutable by default.

Can be declared as mutable with the ‘mut’ keyword.

let x = 5;
x = 7;

let mut x = 5;
x = 7;

Why do we have
immutability by default?

16

Numerical Types
 Numerical Types Numerical Literals

let mut x:u16 = 0xffff;

17

Shadowing

let x:u16 = 0xffff;
{

let x:u32 = 0xffffffff;
{

let x:u64 = 0xffffffffffffffff;
}

}

let x:u16 = 0xffff;
let x:u32 = 0xffffffff;
let x:u64 = 0xffffffffffffffff;

When would this be
useful to have?

18

Tuples & Arrays

let x:(i32, &str, char) = (1, "hello", '@');

let (i, s, c) = x;

let y = x.2;

Tuples

Arrays

let x:[i32;3] = [1, 1, 1];

let y = [1;3]; // also [1, 1, 1]

let slice = &x[0..1]; // [1, 1]

19

Statements vs. Expressions

Expressions evaluate to a value; statements do not.

Semicolons distinguish between an expression and a statement.

let x = let y = let z = 5;

let x = {
let z = -b + sqrt(pow(b,2) - 4 * a * c);
z / 2 * a

}

20

Conditional Statements

let x:i32 = if(cond) {
...

}else{
...

}

Conditionals can be used as expressions.

A condition must be of type ‘bool’; Rust doesn’t convert types to ‘bool’.

let x:i32 = if(y = 5) {
...

}else{
...

}

21

Loops
let t = loop {
 break 5;
};

use nix::unistd::{fork};

while(true){
fork();

}

for i in (0..100) {
println!(i);

}

fn foo(num:u32) -> u32 {
...
let ex_closure = |num:u32| -> u32 {

...
};

num + 5
}

22

Functions

match something_error_prone() {

Ok(success_value) => { ... }

Err(err_value) => { ... }

}

23

Enums & Matching

match optional_result() {

Some(value) => { ... }

None => { ... }

}

struct Ian {
pub publications: Vec<Publication>

}

pub trait GradStudent {
fn submit_publication(&self) -> Vec<Result<Accept, Reject>>

}

impl GradStudent for Ian {

fn submit_publication(&self) -> Vec<Result<Accept, Reject>>{
self.publications

.map(|_| Reject)

.collect::<Vec<Result<Accept, Reject>>>()
}

}
24

Structs & Traits

25

The Borrow Checker

26

● That you can't move the same value twice.
● That you can't move a value while it is borrowed.
● That you can't access a place while it is mutably borrowed

(except through the reference).
● That you can't mutate a place while it is immutably borrowed.

From “Guide to Rustc Development”

Rust’s Borrow Checker does the following:

27

X

x = y

Y XY

x = y

Copy Semantics Move Semantics

Assignment behaves differently for different types.

What’s the point of this?

28

Strings have move semantics.

fn conversation(){
 let greeting = String::from("Hello world!");

 let response = greeting;
 response.pop();
 response.insert(response.len(), '?');

 println!("{}", greeting);
 println!("{}", response);
}

29

Strings have move semantics.

fn conversation(){
 let greeting = String::from("Hello world!");

 let response = greeting;
 response.pop();
 response.insert(response.len(), '?');

 println!("{}", greeting);
 println!("{}", response);
}

30

We can avoid moves with borrowing.

fn conversation(){

 let greeting = String::from("Hello world!"); // String

 let response = &greeting[0..11]; // &str

println!("{}", greeting);

println!("{}?", response);
}

31

fn conversation(){

 let greeting = String::from("Hello world!");

 let response = &greeting[0..11];

println!("{}", greeting);

greeting.clear(); // greeting == “”

println!("{}?", response);
}

We can avoid moves with borrowing.

32

error[E0502]: cannot borrow `greeting` as mutable because it is also
borrowed as immutable
 --> src/lib.rs:8:2
 |
4 | let response = &greeting[0..11]; // &str
 | -------- immutable borrow occurs here
...
8 | greeting.clear();
 | ^^^^^^^^^^^^^^^^ mutable borrow occurs here
9 |
10 | println!("{}?", response);
 | -------- immutable borrow later used here

Rust has awesome error messages!

We can avoid moves with borrowing.

https://doc.rust-lang.org/stable/error-index.html#E0502
https://play.rust-lang.org/#

33

What does it mean to borrow something as mutable?

fn conversation(){

 let greeting = String::from("Hello world!");

let immut_greeting = & greeting; // immutable borrow

let mut greeting = & mut greeting; // mutable borrow

(*immut_greeting).clear(); // greeting == “”

(*mut_greeting).clear();
}

34

“…a system for statically building a proof that data in
memory is either uniquely owned (and thus able to
allow unguarded mutation) or collectively shared, but
not both.”

Rust’s borrow checker is…

Check out Oxide: the
Essence of Rust!

35

Mutability

Variables are immutable by default.

Can be declared as mutable with the ‘mut’ keyword.

let x = 5;
x = 7;

let mut x = 5;
x = 7;

Why do we have
immutability by default?

36

A reference is one of two things:

1. Unique and mutable
2. Sharable and immutable

How does Rust verify this?

37

The scope of a value is the duration for which it is allocated.

The lifetime of a reference is the duration for which it is used.

The borrow checker reasons using lifetimes.

Must form a partial ordering.

v &v &&v …

38

fn conversation(){

 let greeting = String::from("Hello world!");

 let response = &greeting[0..11];

println!("{}", greeting);

greeting.clear(); == call_function(& mut greeting);

println!("{}?", response);
}

What are the lifetimes and scopes here?

39

error[E0502]: cannot borrow `greeting` as mutable because it is also
borrowed as immutable
 --> src/lib.rs:8:2
 |
4 | let response = &greeting[0..11]; // &str
 | -------- immutable borrow occurs here
...
8 | greeting.clear();
 | ^^^^^^^^^^^^^^^^ mutable borrow occurs here
9 |
10 | println!("{}?", response);
 | -------- immutable borrow later used here

https://doc.rust-lang.org/stable/error-index.html#E0502
https://play.rust-lang.org/#

40

Rust restricts assignments based on lifetimes.
fn assign<’a, ‘b>(mut a: & ‘a i32, b: & ‘b i32)

where ‘b:’a
{
 a = b;
}

error: lifetime may not live long enough
 --> src/lib.rs:2:5
 |
1 | fn assign(mut a: & i32, b : & i32){
 | - - let's call the lifetime of this reference`'1`
 | |
 | let's call the lifetime of this reference `'2`
2 | a = b;
 | ^^^^^ assignment requires that `'1` must outlive `'2`

https://play.rust-lang.org/#

41

Lifetimes are tricky.

1. Defined differently by different formalisms.
2. Changed throughout the development of Rust.
3. Require type annotations.

42

class Animal { ... }

class Crab extends Animal { ... }

public static void main(String[] args){

Crab c = (Crab) new Animal(); X
Animal a = (Animal) new Crab();

}

Lifetimes are types.

43

Writing a value of a longer lifetime
to a shorter lifetime?

Writing a value of a shorter lifetime
to a shorter lifetime?

Animal a = (Animal) new Crab();

Crab a = (Crab) some_animal; // some_animal instanceof Animal

Exercise:

Complete the signature and implementation for the following versions of the
‘swap’ function without using any other dependencies. Some signatures aren’t
entirely complete.

1. fn swap(x: & i32, y: & i32)

2. fn swap(x: & & i32, y: & & i32)

3. fn swap<T>(x: & T, y: & T)

Each should swap the values of the two parameters such that, after the function
returns, we have:

*y = old(*x) && *x = old(*y)

44
https://play.rust-lang.org/
https://tinyurl.com/3y3wz4sz

Email to icmccorm@andrew.cmu.edu, or fill out worksheet and leave
behind. Feel free to work in pairs or alone—write everyone’s Andrew ID.

https://play.rust-lang.org/
https://tinyurl.com/3y3wz4sz
mailto:icmccorm@andrew.cmu.edu

Answer #1

45

fn swap<T>(x: & mut i32, y: & mut i32)
{

let temp = *x;
*x = *y;
*y = temp;

}

Answer #2

46

fn swap<T, ‘a>(x: & mut ‘a & T, y: & mut ‘a & T)
{

let temp = *x;
*x = *y;
*y = temp;

}

Answer #3

47

fn swap<T>(x: & mut T, y: & mut T)
{

unsafe {
let a = ptr::read(x);
let b = ptr::read(y);

 ptr::write(x, b);
 ptr::write(y, a);

}
}

std::mem::swap

48

Research Overview

Memory safe languages aren’t truly safe.

CVE-2022-37454 — A buffer overflow vulnerability in the reference
implementation of the SHA-3 hash function for Python and PHP.

Pushed in 2011, CVE disclosed last month.

import hashlib
h = hashlib.sha3_224()

h.update(b"\x00" * 1)
h.update(b"\x00" * 4294967295)

print(h.hexdigest())

50

Rust’s standard library uses
unsafe for “axiomatic”1 operations.

1: fn swap<T>(x: &mut T, y: &mut T)
2: {
3: unsafe {
4: let a = ptr::read(x);
5: let b = ptr::read(y);
6: ptr::write(x, b);
7: ptr::write(y, a);
8: }
9: }

std::mem::swap

1Scott, 2019

Calling Foreign Functions

1: extern “C” {
2: int foo(*mut i32);
3: }
4:
5: int main() {
6: let x = 5;
6: unsafe {
7: return foo(ptr::read(&x));
8: }
9: }

Example Code

51

52

Rust’s most popular package
repository is crates.io

Rust refer to ‘package’ or ‘library’ as a ‘crate’.

95,620 crates published as of 10/30.

53

Categories of Unsafe Function Calls

541Evans et al., ICSE 2020

47.2%
Rust’s standard

library

30.3%
User-written or

3rd-party

22.5%
Foreign Functions

36.4% C-style
pointer use

Automatically translating C to Rust

55

c2rust

Existing C
Code

Unsafe Rust
Code

Safe Rust
Code

56

RawDeref - dereferencing a raw pointer

Global - read/write global state

Union - read a field from a C-style union.

Allocation - direct calls to alloc/free

Extern - calling foreign functions or function pointers

Cast - unsafe casting

InlineASM - inline assembly instructions

Categories of
unsafety
observed in 17
C repositories.

1Emre et al., OOPSLA 2021

Unsafe features are close in proximity.

571Emre et al., OOPSLA 2021

Source-to-source transformation is a possible solution.

58Ling et al., ICSE 2022

Using transformations written in the TXL language, achieved > 95%
reduction in unsafe functions.

Soundness of program transformation.

59

To convert unsafe pointers to safe references, we need an analysis that:

Can prove ownership

Can infer lifetime information

Emre et al. use the Rust compiler as an oracle.

How does this problem evolve if we don’t target rewriting C?

Rust Spec

Lifetime Inference for C/C++

60

Instead of translating C/C++ to Rust, infer wrappers
around unsafe foreign function calls.

fn example<'a, 'b, T>(x: & mut & 'a T, y: & mut & 'b T)
where 'a:'b, 'b:'a

{

 unsafe {

…
let result **i32 = some_function_in_c(x, y)

}

...
}

