
Copyright © 2016 Elsevier

Implementation of Objects

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 10

Prof. Jonathan Aldrich

Acknowledgments: some presentation ideas
from Ben Titzer, Craig Chambers

HW 6 Mystery Explained

• When we studied composite types, we learned that
records have two subtyping rules:

• But in the μTS specification, there is only the S-width
rule. Why?

HW 6 Mystery Explained

• μTS has no S-width rule. Why?

• μTS interfaces are a combination of 3 things:
• Records – because there are several fields
• Recursive types – because the interface type can be used in

its own definition
• Pointer types – because the fields are mutable

• Remember – 1*  2* only if 1 = 2

• Fun fact: TypeScript interfaces are tagged unions too!
• But not in the μTS language you are implementing

HW 6 Mystery Explained

• μTS has no S-width rule. Why?

• Our μTS rule is similar to the rules of Typescript
• Interestingly, Flow does support depth subtyping!

• Flow is a different type system for JavaScript
• Why? Flow lets you designate some fields as immutable

• Can’t write to those fields after initialization
• Depth subtyping applies only to immutable fields

• These fields are still implemented with pointers, but don’t
have to follow the invariant subtyping rules that pointers do

HW 6 Thoughts
• The main challenge in HW6 is probably just writing

tree traversals in OCaml

• We assigned a checkpoint (due Thursday, October 27)
to make sure you get started

• The checkpoint is a small portion of the overall work
but we hope it will help you get over this “hump.”

Implementing Methods: this

• Methods are passed an extra, hidden, initial parameter:
this (called self in Smalltalk and some other languages)
• Allows the method to access the fields of the object, and call

other methods

Object Models

• An object model describes the data representation used by a
language implementation

• Criteria for object models:
• Implementation complexity
• Performance
• Space use

• Common features
• An object is usually a contiguous block of memory

• But sometimes several related blocks are used
• Objects usually needs meta information – a “tag” or “header”

• Typically more information is needed if the language is more dynamic, has
reflection, or is garbage collected

• We’ll start with object models for statically typed
single-inheritance OO languages like Java and C#

Prefixing - Implementing Inheritance

• Prefixing: layout of subclass has layout of superclass as a
prefix

class Point {
int x;
int y;

}
class ColorPoint extends Point {

Color color;
}

// OK, ColorPoint is a subtype of Point
Point p = new ColorPoint(0, 1, green);
// all subclasses of Point have x and y in the same place
int manhattanDistance = p.x + p.y;

x

y

x

y

color

Example due to Craig Chambers

Implementing Dynamic Dispatch

Possible Strategies

1. Each object knows its type; search the inheritance hierarchy
• Very slow

2. Use a hash table
• Can be a cache for strategy #1
• Still slow, but was used in early Smalltalk systems

3. Store function pointers in objects, as if they were fields
• This is conceptually how JavaScript works!
• Invocation is fast & constant time: load and indirect jump
• Con: objects are big!

• Observation: in this strategy, all objects of the same class will
store the same function pointers. Can we factor them out?

Virtual Function Tables

• The assembly pseudocode generated for f‐>m() is:
r1 := f
r2 := ∗r1 –– vtable address
r2 := ∗(r2 + (3−1) × 4) –– assuming 4=sizeof(address)
call ∗r2

Dynamic Method Binding

Multiple Interface Inheritance
class widget { ... }
class named_widget extends widget

implements sortable_object { ... }
class augmented_widget extends named_widget

implements graphable_object, storable_object { ... }

Multiple Interface Inheritance

• Consider a cast from augmented_widget to sortable_object:
r2 := r1 + a

Multiple Interface Inheritance

• Consider a call to an interface method of sortable_object
r2 := ∗r1 –– vtable address
r3 := *r2 –– this correction
r3 += r1 ‐‐ add correction to old address
call ∗(r2 + 4) ‐‐ call (assumes first method in vtable)

Object model practice

• Draw the layout of the object created at the end of this code.
Show all virtual function tables.

interface Pingable {
public void ping();

}
class Counter implements Pingable {

int count = 0;
public void ping() {
++count;

}
public int val() {
return count;

}
}

Counter c = new Counter();

Real Multiple Inheritance

Two approaches:

• “non-virtual inheritance” – A C++ hack
• Just include state from both inherited classes
• Works like multiple interface inheritance
• If there’s a diamond in the hierarchy, you get some fields twice

• Good luck fixing bugs if the duplicate fields have inconsistent values!
• Fast, simple, and works if there are no diamonds, or if the diamond

classes have no state

• The right way (C++ virtual inheritance)
• Essentially treat fields like methods – look up their location in a vtable
• Slower, but has reasonable semantics

Animal

FlyingAnimalMammal

Bat

JavaScript’s Object Model

• Each object has multiple dynamically-typed properties
• Indexed by strings
• Can be added or deleted dynamically

• The vtable strategy doesn’t apply!
• Instead, start with a map from property name to value

• Implemented as a list of pairs, or a hash table
• Slow!

Optimizing JavaScript

• Start with a map from property name to value
• Implemented as a list of pairs, or a hash table
• Slow!

• Observation: most objects fall into one of a few “shapes”
• Used “hidden shapes”

• A shared map that shows where to find an object’s properties
• No need for a hash table for most objects

Inline Caches
• Consider looking up field x in the statement:

var f = o.x;

• An inline cache stores K entries, where an entry can be of the form:

entry = {shape, offset}

• The access searches through the entries, looking for a matching shape
– The hashtable is a backup

• Code for the inline cache access looks like:

lookup(o: Object, ic: InlineCache, propertyName: string) {
for (i = 0; i < K; i++) {
if (o.shape == ic.entries[i].shape)
return o.properties[ic.entries[i].offset];

}
// ic might be updated in this call
return o.hashtable.lookup(propertyName, ic);

}

Hidden Classes
• Hidden classes form a tree with transitions
• Example:

function Foo(x, y) {
this.x = x;
this.y = y;

}
var x = new Foo(33, 44);

• Each time a field is added, the hidden class is updated
• Removing a field in LIFO order reverses the process
• Removing a different field? Typically go to hashtable strategy

– otherwise we get too many hidden classes

Foo2

x

Foo1

x

y

Foo3
add x add y

