Implementation of Objects

17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 10

Acknowledgments: some presentation ideas
from Ben Titzer, Craig Chambers

Copyright © 2016 Elsevier

HW 6 Mystery Explained

 When we studied composite types, we learned that
records have two subtyping rules:

<7

{f:7}< '}

S-depth

S-width

{f:rg:7}<{f:7}

* But in the uTS specification, there 1s only the S-width
rule. Why?

HW 6 Mystery Explained
 uTS has no S-width rule. Why?

{ '}

T

f7)

VARIVA

S-depth

S-width

{f:rg:T}y<{f:7}

* uTS interfaces are a combination of 3 things:
» Records — because there are several fields
* Recursive types — because the interface type can be used in
its own definition

» Pointer types — because the fields are mutable
 Remember —t,* <t,*onlyift, =1,

* Fun fact: TypeScript interfaces are tagged unions too!
* Butnot in the uTS language you are implementing

HW 6 Mystery Explained
 uTS has no S-width rule. Why?

{ '}

T

f7)

S-depth

VARIVA

S-width

{f:rg:T}y<{f:7}

e Our uTS rule 1s similar to the rules of Typescript

* Interestingly, Flow does support depth subtyping!
* Flow 1s a different type system for JavaScript

 Why? Flow lets you designate some fields as immutable
« Can’t write to those fields after initialization

* Depth subtyping applies only to immutable fields
e These fields are still implemented with pointers, but don’t
have to follow the invariant subtyping rules that pointers do

HW 6 Thoughts

* The main challenge in HW6 1s probably just writing
tree traversals in OCaml

* We assigned a checkpoint (due Thursday, October 27)
to make sure you get started

* The checkpoint 1s a small portion of the overall work
but we hope it will help you get over this “hump.”

Implementing Methods: this

* Methods are passed an extra, hidden, initial parameter:
this (called self in Smalltalk and some other languages)

« Allows the method to access the fields of the object, and call
other methods

Object Models

* An object model describes the data representation used by a
language implementation

* Criteria for object models:
« Implementation complexity
e Performance
* Space use

e Common features

* An object 1s usually a contiguous block of memory
 But sometimes several related blocks are used

e Objects usually needs meta information — a “tag” or “header”

« Typically more information 1s needed if the language i1s more dynamic, has
reflection, or is garbage collected

« We’ll start with object models for statically typed
single-inheritance OO languages like Java and C#

Prefixing - Implementing Inheritance

* Prefixing: layout of subclass has layout of superclass as a
prefix

class Point { X
int x;
int y;

¥

class ColorPoint extends Point {
Color color;

} color

// OK, ColorPoint 1s a subtype of Point

Point p = new ColorPoint(@, 1, green);

// all subclasses of Point have x and y 1in the same place
int manhattanDistance = p.x + p.y;

Example due to Craig Chambers

Implementing Dynamic Dispatch

Possible Strategies

1. Each object knows its type; search the inheritance hierarchy
* Very slow

2. Use a hash table

* Can be a cache for strategy #1
« Still slow, but was used in early Smalltalk systems

3. Store function pointers in objects, as if they were fields
« This 1s conceptually how JavaScript works!
* Invocation is fast & constant time: load and indirect jump
 Con: objects are big!

e Observation: 1n this strategy, all objects of the same class will
store the same function pointers. Can we factor them out?

Virtual Function Tables

class foo {

int a; F foo’s vtable

double b; > foo::k ——

char c; a foo::1 —4— _
public: — 1 code pointers

virtual void k(... b — 1

virtual int 1(... "

virtual void m();

virtual double n(..

} F;

FigUI’E 10.3 Implementation of virtual methods. The representation of object F begins with the address of the vtable for
class foo. (All objects of this class will point to the same vtable.) The vtable itself consists of an array of addresses, one for the
code of each virtual method of the class. The remainder of F consists of the representations of its fields.

« The assembly pseudocode generated for £->m() is:

rl := f

r2 := xrl -— vtable address

r2 := x(r2 + (3-1) x 4) -- assuming 4=sizeof(address)
call xr2

class bar : public foo {
int w;

public:
void m() override;

virtual double s(...

virtual char *t(...

} B;

bar’s vtable

<[]

w

foo::k—F—>
foo::1 —4—>
bar::m ——>
foo::in —4—
bar::s —4—
bar::t —4—>

code pointers

Figure 10.4 Implementation of single inheritance. As in Figure |0.3, the representation of object B begins with the address of
Its class’s vtable. The first four entries in the table represent the same members as they do for foo, except that one—m—~has
been overridden and now contains the address of the code for a different subroutine. Additional fields of bar follow the ones
inherited from foo in the representation of B; additional virtual methods follow the ones inherited from foo In the vtable of

class bar.

EVIER

ELS

Multiple Interface Inheritance

class widget { ... }
class named _widget extends widget
implements sortable object { ... }
class augmented widget extends named widget
implements graphable object, storable object { ... }

augmented_widget
object vtable

widget view —T— >

\

augmented_
widget part

a

widget fields

sortable_object view

Y

—d

¢ sortable_

object part

name

graphable_object view ——» —_—]

storable_object view —> ———\\
—b

graphable_
object part

storable_
object part

augmented_widget
object

widget view augmented_
widget part

widget fields

sortable_object view

c sortable_

object part

graphable_object view

>
storable_object view — \

graphable_
object part

storable_
object part

* (Consider a cast from augmented_widget to sortable_object:
r2 :=

3

F

ELSEVIER

Multiple Interface Inheritance

augmented_widget
object vtable

widget view —— >

Y

augmented_
widget part

a

widget fields
b

sortable_object vieW ————>

—da

c sortable_

object part

name

graphable_object view ——» —_—

storable_object view —> —-—\\
-b

graphable_
object part

storable_
object part

* Consider a call to an interface method of sortable object

r2 := xrl —— vtable address
r3 := *r2 —— this correction
r3 += rl -- add correction to old address

call *(r2 + 4) -- call (assumes first method in vtable) °

Object model practice

« Draw the layout of the object created at the end of this code.
Show all virtual function tables.

interface Pingable {
public void ping();
}
class Counter implements Pingable {
int count = 9;
public void ping() {
++count;
}
public int val() {
return count;

}
}

Counter c = new Counter();

Real Multiple Inheritance

Animal

Two approaches:

Mammal FlyingAnimal

* ‘“non-virtual inheritance” — A C++ hack
o Just include state from both inherited classes Bat
* Works like multiple interface inheritance

« Ifthere’s a diamond in the hierarchy, you get some fields twice
* Good luck fixing bugs if the duplicate fields have inconsistent values!

e Fast, simple, and works 1f there are no diamonds, or if the diamond
classes have no state

* The right way (C++ virtual inheritance)
* Essentially treat fields like methods — look up their location in a vtable
 Slower, but has reasonable semantics

JavaScript’s Object Model

* Each object has multiple dynamically-typed properties
e Indexed by strings
* (Can be added or deleted dynamically

* The vtable strategy doesn’t apply!

* Instead, start with a map from property name to value

* Implemented as a list of pairs, or a hash table
* Slow!

 Start with a map from property name to value
« Implemented as a list of pairs, or a hash table
* Slow!

« (Observation: most objects fall into one of a few “‘shapes”
* Used “hidden shapes”

» A shared map that shows where to find an object’s properties
* No need for a hash table for most objects

£k
ELSEVIER

Inline Caches

* Consider looking up field x in the statement:

var ¥ = 0.X;

* Aninline cache stores K entries, where an entry can be of the form:
entry = {shape, offset}

« The access searches through the entries, looking for a matching shape
— The hashtable 1s a backup

e (Code for the inline cache access looks like:

lookup(o: Object, ic: InlineCache, propertyName: string) {
for (i = 0; i < K; i++) {
if (o.shape == ic.entries[i].shape)
return o.properties[ic.entries[i].offset];

}
// 1c might be updated in this call

return o.hashtable.lookup(propertyName, ic);

 Hidden classes form a tree with transitions
« Example:

function Foo(x, y) {
this.x = Xx;
this.y = y;

¥

var x = new Foo(33, 44);

« FEach time a field is added, the hidden class is updated
« Removing a field in LIFO order reverses the process

 Removing a different field? Typically go to hashtable strategy
— otherwise we get too many hidden classes

£ _!
ELSEVIER

