17-363/17-663

. Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 10

Copyright © 2016 Elsevier

Prof. Jonathan Aldrich

A “ &
¢
" i LA

ELS

EVIER




Object-Oriented Programming (OOP)

Three key aspects:

* Encapsulation
* An object 1s a grouping of state and behavior, and hides its
implementation choices from the outside world

* Inheritance
* Objects are related, and we can capture shared behavior in a
way that multiple kinds of objects can use 1t without

defining 1t themselves This aspect is special—it’s
the only one present in ALL

o Dynamic dispatch object-oriented languages
* The same operation can be implemented 1n different ways;
each object knows what implementation to use for each .,

of its operations




* An object is a grouping of state and behavior

members : [1, 2, 3],

isMember : function(x) {

return this.members.includes(x); behavior

}s
add : function(x) {

if (!isMember(x))
this.members.push(x);

}
¥
setImpl.add(4); // uses the object
setImpl.isMember(4); // returns true

ELSEVIER




* We can hide some of the object’s state
interface IntSet leaves

interface IntSet { out the members field.
isMember : (x:number) => boolean | \/Ere=liear=lalelsriatzii EiEls
add : (x:number) => void without affecting clients.

Assigning to a variable of
type IntSet hides
everything that's not in
the interface

setImpl = { ... };
set : IntSet = setImpl;

.add(4);
.isMember(4);

.members ,
It's a type error to access

members that are not
exposed in the interface

ELSEVIER




Classes

* A class 1s a template for objects. It defines structure
& behavior used by all instances of the class

class IntSetClass {
members : number|];
constructor(m:number[]) {
this.members = m;
}
isMember (x:number) :boolean {
return this.members.includes(x);

}
// add(x:number):void { ... }

¥

let set2 : IntSetClass = new IntSetClass([1l, 2]);
set2.add(5);

set2.isMember(5); // returns true




Dynamic Dispatch

* Every object knows 1ts method implementations (whether
defined in the object, or 1n that object’s class)
 When we invoke a method, the code for that object is run

class Dog {

talk() { console.log("woof!"); }
}
class Cat {

talk() { console.log("meow!"); }
}

let animals = [new Dog(), new Cat() ];
for (let a of animals)
a.talk(); // prints woof! meow!




Inheritance

» Inheritance lets us reuse code from one class in another
« Prototype: a variant where you reuse code from another object (see JavaScript)

class Collection {
constructor(ms) { this.members = ms; }
isMember(x) { return this.members.includes(x); }
add(x) { this.members.push(x); }
addAl1l(a) { for (let x of a) this.add(x); }
}
class Set extends Collection {
constructor(ms) { super(ms); }
add(x) { if (!this.isMember(x)) { super.add(x); } }

let set = new Set([]);
set.add(3);
set.addAl1([3, 4]);
set.isMember(4);




Exercise

 Draw the frames on the runtime stack when 4 1s added to the set in

the call set.addAll([3, 4]). Show all methods that are 1n from main()
through push()

class Collection {
constructor(ms) { this.members = ms; }
isMember(x) { return this.members.includes(x); }
add(x) { this.members.push(x); }
addAll(a) { for (let x of a) this.add(x); }
}
class Set extends Collection {
constructor(ms) { super(ms); }
add(x) { if (!this.isMember(x)) { super.add(x); } }
}
let set = new Set([]);
set.add(3);
set.addAll([3, 4]);




Why Objects Matter

* Encapsulation (not specific to objects)

Separate reasoning about a single module enhances correctness & finding bugs
Ability to change the internals of a module without affecting others enhances
software evolution

 Inheritance

Some code patterns are difficult to reuse 1in any other way

« Typically when you have a reusable part and a customizable part, and they both call each
other

That said, many uses of inheritance can (and should) be replaced with

composition
e Common guideline: prefer composition to inheritance

* Dynamic dispatch

Architecturally important — support multiple independent & interoperating

implementations of a common interface "
Examples all over the place: mobile phone apps, Linux device drlvers Sy
graphical user interfaces, MapReduce, web frameworks ;




* We can use the static and dynamic semantics techniques we have
learned to model objects

Source: Atshushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java and GJ.
OOPSLA 1999.

ELSEVIER




