17-363/17-663

: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP section 2.3

Copyright © 2016 Elsevier

Prof. Jonathan Aldrich

A + -
ol
" oE A

ELS

EVIER

Parsing

* A context-free grammar (CFQG) 1s a generator for
a context-free language (CFL)

— A parser 1s a language recognizer

* There are an infinite number of grammars for
every context-free language
— Not all grammars are created equal, however
— Ambiguity
— Understandability

— Performance

Parsing

o It turns out that for any CFG we can create
a parser that runs in O(n?) time
* E.g. the Generalized LR (GLR) parser used to
parse expressions in SASyLF
« O(n?) time is clearly unacceptable for a
parser 1n a compiler - too slow

* It’s OK in SASyLF because we only write
small expressions in proofs

* Some real languages do use GLR parsers, but -

only their grammar 1s still “mostly” LR

Parsing

» Fortunately, there are large classes of
grammars for which we can build parsers
that run 1n linear time

— The two most important classes are called
LL and LR

» LL stands for
'Left-to-right, Leftmost derivation'.

* LR stands for
'Left-to-right, Rightmost derivation’

Leftmost vs. Rightmost Derivations

expr — id | number | - expr | (expr)
expr op expr
opi—x & | = | %]/

Leftmost derivation

* Always chooses the left-most nonterminal to
replace

expr = expr op expr
=> expr op expr op expr
= 1d op expr op expr
= 1d * expr op expr
= 1d * id op expr
= id * id + expr
= id *1d +1d

* Note: both derivations produce the same tree!

expr
e e
expr op expr
expr op expr + id(intercept)
| |
id(slope) * id(x)

Rightmost derivation

* Always chooses the right-most nonterminal to
replace

expr = expr op expr
= expr op id
= expr +1d
= expr op expr + id
= expr op id + id
= expr *id +1d
= 1d * 1d +1d

Parsing

* LL parsers are also called 'top-down', or 'predictive’
parsers & LR parsers are also called 'bottom-up', or
'shift-reduce’ parsers
 We’ll discuss LL parsers today, and LR parsers in the next

lecture

» There are several important sub-classes of LR parsers

— SLR
— LALR

 We won't be going into detail on the differences
between them

Parsing

* You commonly see LL or LR (or whatever) written with a
number 1n parentheses after it

— This number indicates how many tokens of look-ahead are
required 1n order to parse

— Almost all real compilers use one token of look-ahead
— Some tools let you special-case to look further ahead for certain constructs
* The expression grammar (with precedence and
associativity) you saw before 1s LR(1), but not LL(1)

* Every CFL that can be parsed deterministically has an
SLR(1) grammar (which 1s LR(1))

e Let’s start with the following statement grammar

« This is not an LL(1) grammar — we’ll see how we need to adapt it

program
stmt list

stmt

id list

—

—

—

stmt list SS

stmt stmt list
3

id := 1d

read 1id

write 1id

1id (1d list)
1d

id list , 1d

_ L

ELS

el
EVIER

program stmt list $S8$

b < .
* Let’s parse this program: stmt list stmt stmt list

read A g

process (A) stmt id := id
write A read id

write id
id (id list)
« Here’s the parse sequence id list id

program id list , id
stmt list $$$
stmt stmt list $$$ // based on lookahead = read
read id stmt list $$$ // based on lookahead = read
stmt list $$$ // accept read and id

// what to do here?

// 1d lookahead => assign or call

| g é‘» 3

ELSEVIER

 Whenever making a choice between two productions of a
nonterminal. ..

[t must be possible to predict which 1s taken based on 1
lookahead token

| g é‘» 3

ELSEVIER

* Problems trying to make a grammar LL(1)

— common prefixes
* solved by "left-factoring”. Example:
stmt - 1d := expr
| 1d (arg list)

 This can be expressed instead:
stmt -~ 1d id stmt tail
id stmt tail - := expr

| (arg list)
* we can left-factor mechanically

LL Parsing

* Problems trying to make a grammar LL(1)

— left recursion: another thing that LL parsers can't
handle

« Example of left recursion:
id list - 1d | 1d list , id

» This can be expressed instead:

1d 1list - 1d 1d list tail
1d list tail - , 1id 1id list tail
| €

» we can get rid of all left recursion mechanically 1n
any grammar

LL Parsing

* Note that eliminating left recursion and
common prefixes does NOT make a
grammar LL

— there are infinitely many non-LL
LANGUAGES, and the mechanical
transformations work on them just fine

— the few that arise 1n practice, however, can
generally be handled with kludges

program
stmt list

stmt

id stmt tail

1d list
id list tail

stmt list $$$S
stmt stmt list
3

1d 1d stmt tail
read 1d

write 1id

:= 1d

(1d list)

1d 1d list tail
, 1d 1d list tail
3

ELSEVIER

program - stmt list S

* Let’s parse this program: stmt list ~ stmt stmt list | ¢
read A stmt ~ id id stmt tail
process (A) | read id

| write id
id stmt tail - := 1d

| (id list)
« Here’s the parse sequence id_list - 1d 1d_list_tail
id list tail - , 1d id list tail |

write A

program
read id stmt list $$$ // several steps here, shown earlier

stmt list $$$ // accept read and id tokens

stmt stmtlist $$$ // based on id lookahead

id id stmt tail stmtlist $$$ // based on id lookahead

id stmt tail stmtlist $$$ // accept id token

(1id list) stmtlist $$9 // based on (lookahead

id id_list_tail) stmtlist $$$ // accept (token, expand id 1is;

id list tail) stmtlist $$$ // accept id token

) stmtlist $$$ // id list tail=t¢ based on) lookahead ?f.$ﬁ

stmtlist SSSS // accept (, id, and) tokens Pj|51\||ﬂ;R

* Let’s parse this program:
read A

process (A)

write A

» Here’s the parse sequence

program
stmtlist SSS

program
stmt list
stmt

id stmt tail

id list
id list tail

—~ stmt list $$$

— stmt stmt list | ¢

- 1d 1d stmt tail

| read id

| write id

- = 1d

| (1d list)

—» 1id 1id list tail

- , 1d 1d list tail | e

// several steps...shown in previous slides

write id stmtlist $$$ // two steps, based on id lookahead

stmtlist S$SS

// accept write and 1id tokens

$SS // based on $$$ lookahead

e !

ELSEVIER

* Convert the following grammar to LL(1) form

program - expr S9
expr — term | expr + term

term — 1d | id (expr)

* What are the advantages/disadvantages of your LL(1) grammar compared
to the original one (which was LR(1))?

ol T ,.‘i:
ELSEVIER

program expr SS9
expr term expr tail
expr tail + term expr tail
3
term id term tail
term tail (expr)
3

* Like the bottom-up grammar, this one captures
associativity and precedence, but most people
don't find 1t as pretty

— for one thing, the operands of a given operator aren't in
a RHS together!

— however, the simplicity of the parsing algorithm often
makes up for this weakness

« There are two approaches to LL top-down parsing
« Recursive Descent — typically handwritten

« Parse table — typically generated

| g é‘» 3

ELSEVIER

procedure match(expected)
if input_token = expected then consume_input_token()
else parse_error

—— this is the start routine:
procedure program)
case input_token of
id, read, write, $% :
stmt_list()
match($$)
otherwise parse_error

procedure stmt_list()
case input_token of
id, read, write : stmt(); stmt_list()
$$: skip —— epsilon production
otherwise parse_error

Ry i

e VN0

VIER

ELS]

orocedure stmt()

procedure stmt()
case input_token of
id : match(id); match(:=); expr()
read : match(read): match(id)
write : match(write); expr()
otherwise parse_error

procedure expr()
case input_token of
id, number, (: term(); term_tail()
otherwise parse_error

procedure term_tail()
case input_token of
+, — : add_op(); term(); term_tail()
), id, read, write, $$:
skip —— epsilon production
otherwise parse_error

procedure terml)
case input_token of
id, number, (: factor(); factor_tail()
otherwise parse_error

procedure factor_tall()
case input_token of
%, / - mult_op(); factor(); factor_tail()
+, =,), id, read, write, $$:
skip —— epsilon production
otherwise parse_error

procedure factor()
case input_token of
id : match(id)
number : match(number)
(: match((); expr(); match())
otherwise parse_error

procedure add_op()
case input_token of
+ . match(+)
- . match(-)
otherwise parse_error

procedure mult_op()
case input_token of
* : match(x*)
/ : match(/)
otherwise parse_error

LL Parsing

» Table-driven LL parsing: you have a big
loop 1n which you repeatedly look up an
action 1n a two-dimensional table based on
current leftmost non-terminal and current
input token. The actions are

(1) match a terminal
(2) predict a production
(3) announce a syntax error

* LL(1) parse table for parsing for calculator
language

Top-of-stack Current input token
nonterminal id number ite = () o+

program —
stmit_list =
stmt -

expr 7
term_tail - =
term
factor_taul
factor
add_op
mult_op

v |

EVIER

LL Parsing

* To keep track of the left-most non-terminal,
you push the as-yet-unseen portions of
productions onto a stack

— As we did 1n the earlier example of LL parsing
— see also Figure 2.21 1in book

* The key thing to keep 1n mind 1s that the
stack contains all the stuff you expect to see
between now and the end of the program

— what you predict you will see

* How to know which production to choose?
* Use PREDICT sets for each production

* set of terminals that predict this production is taken

 PREDICT sets for different productions of the same
nonterminal are disjoint

el o

ELSEVIER

LL Parsing

* The algorithm to build PREDICT sets 1s
tedious (for a "real" sized grammar), but

relatively

simple

* It consists of three stages:

— (1) com
—(2) com

oute FIRST sets for symbols
oute FOLLOW sets for non-terminals

(this reg
Strings)

L

uires computing FIRST sets for some

— (3) compute PREDICT sets or table for all
productions

[t 1s conventional in general discussions of grammars to use
c: lower case letters near the beginning of the alphabet for terminals
x: lower case letters near the end of the alphabet for strings of terminals
A: upper case letters near the beginning of the alphabet for non-terminals
X: upper case letters near the end of the alphabet for arbitrary symbols
a: Greek letters for arbitrary strings of symbols

ELSEVIER

e Algorithm First/Follow/Predict:

— FIRST () == {c : a =>* c [}
FOLLOW(A) == {c : S =" o A c [}

PREDICT (A — X, ... X) ==
FIRST (X, ... X))

U (if X,, ..., X =%* g then FOLLOW (A)
else)

- EPS (A) == A —=>* ¢

Example following...

R

S VoW

ELSEVIER

program — stmt_list $$
stmt_list — stmt stmt_list
stmt_list — &

stimi —> 1d := expr
stmt — read id « PREDICT
stmt — write expr

expr — term term_tail

term_tail — add_op term term_tail

term_tail — ¢

term — factor factor_tail

factor_tail — mult_op factor factor_tail

factor_tail — =

factor — (expr)

factor — id

factor — number

add_op — +

add_op — -

mult_op — *

mult_op — /

« FIRST

« FOLLOW

EL

-3,

S

3 ; k™Y ..
ok

EVIER

program — stmt_list $$ $$ € FOLLOW(stmnt_list)
stmt_list — stmt stmt_list

stnt_list —s ¢ EPS(stnt_list) = true
stmt —+ id := expr id € FIRST(stmt)

sttt — read id read € FIRST (stnt)
stmit — write expr write € FIRST(stint)
expr — term term_tail

term_tail — add_op term term_tail

termn_tail — ¢ EPS(term_tail) = true
tertn — factor facror_tail

factor_tail — mult_op factor factor_tail

factor_taill — € EPS(factor_tail) = true
factor —» (expr) (€ FIRST(factor) and) € FOLLOW (expr)
factor — id id € FIRST(factor)
factor — number number € FIRST(factor)
add_op — + + € FIRST(add_op)
add_op — - - € FIRST(add_op)
mult_op — * * € FIRST(mult_op)
mult_op — / / € FIRST(mult_op)

| g é‘» IF

Figure 2.2] “Obvious” facts (right) about the LL(1) calculator grammar (left).

ELSEVIER

FIRST

program {id, read, write, $$}
stmt_list {id, read, write}
stmt {id, read, write}

expr { (, id, number }

term_tail {+, -}

PREDICT

program — stmt_list $$ {id, read, write, $$}
stmt_list — stmt stmt_list {id, read, write}
stmt_list — = {$$}

stmt — id := expr {id}

term { (, id, number }
factor_tail {*, /}
factor { (, id, number }
add_op {+, -}

mult_op {*, /}

stmt — read id {read}

stmt —> write expr {write}

expr — term term_tail { (, id, number }
term_tail — add_op term term_tail {+, -}
term_tail — = {), id, read, write, $$}

term — factor factor_tail { (, id, number }

. factor_tail — mult_op factor factor_tail {*, /}
. factor_tail — = {+, -,), id, read, write, $$}
. factor — (C expr) {(}

. factor —» id {id}

. factor — number {number }

add_op — + {+}

add_op — - {-}

mult_op — * {*}

mult_op — / {/}

o0 ol e I e

[a—
o

FOLLOW
program @
stmt_list {$$}
stmt {id, read, write, $$}
expr {), id, read, write, $$}
term_tail {), id, read, write, $$}
term {+, -,), id, read, write, $$}
factor_tail {+, -,), id, read, write, $$}
factor {+, -, *, /,), id, read, write, $$}
add_op { (, id, number }
mult_op { (, id, number }

— e e e e
N R T

Figure 223 FIRST, FOLLOW, and PREDICT sets for the calculator language. FIRST(c) = {c} ¥ tokens c. EPS(A) is true iff A
€ {stmt_list, term_tail, factor_tail}.

LL Parsing

 If any token belongs to the predict set of
more than one production with the same
LHS, then the grammar 1s not LL(1)

* A conflict can arise because
— the same token can begin more than one RHS

— 1t can begin one RHS and can also appear after

the LHS 1n some valid program, and one
possible RHS 1s ¢

