17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 2 through section 2.2

Prof. Jonathan Aldrich £ 80

Copyright © 2016 Elsevier ELSEVIER

Let’s start by specifying the idea of a digit:

digit — 0| 1|2]|3|4]|5|6]7|8]09

From this we can build narural numbers:

nonzerodigit — 1|2|3|4|5|6|7]|8]9

natural_number — non_zero_digit digit*

Simple concepts like these can be expressed with
regular expressions

ELSEVIER

Regular Expressions

* A regular expression 1s one of the following:
— A character
— The empty string, denoted by ¢
— Two regular expressions concatenated
— Two regular expressions separated by | (1.e., or)

— A regular expression followed by the Kleene star
* (concatenation of zero or more strings)

* Numerical constants accepted by a simple
hand-held calculator:

number — integer | real
integer — digit digit*
real — integer exponent | decimal (exponent | €)

decimal — digit* (. digit | digit .) digit *

exponent — (e | E) (+ | - | €) integer

digit — 0|1]|2]|3]|4|5|6]|7]|8]°9

ELSEVIER

* Define a regular expression for C-style comments
* You may use abbreviations like non-* or newline
* You may use Kleene + (1 or more) in addition to Kleene *

ELSEVIER

Practice with Regular Expressions

e Define a regular expression for C-style comments
* You may use abbreviations like non-* or newline
* You may use Kleene + (1 or more) in addition to Kleene *

* One solution (from the textbook)
comment > /* (non-* | * non-/)" **/

| // (non-newline)” newline

From Tokens to Grammar

* Regular expressions are great for describing tokens

— The smallest meaningful units of syntax — numbers, symbols,
keywords, and 1dentifiers

— These constructs have no interesting recursive structure

* But real programs have recursive structure, even 1n
expressions like 2 * (x + (y /3))

* To capture higher-level syntax we need context-free
grammars

* A calculator expression grammar 1s recursive:

expr — id | number | - expr | (expr)

| expr op expr

op — +|-|*]/ \

expr 1s defined 1n
terms of itself!

ELSEVIER

* Anatomy of a CFG
* In Backus-Naur Form (BNF) A symbol 1s a terminal

start symbol S or a nonterminal

nonterminals N\
expr /~— id | number | - expr | (expr)
| expr

op —> +‘_‘*‘/ terminals 7

production

ELSEVIER

expr —> id | number | - expr | (expr)

* In this grammar, expr op expr
generate the string | & — +1-1*1/
"slope * x + intercept"”

eXpr = expr op expr
expr op 1id

expr + 1d This 1s called a
expr op expr + id derivation

expr op id + 1id
expr * id + id

id ¥ id + id
(slope) (x) (intercept)

ELSEVIER

Parse tree for expression grammar for
"slope * x + intercept"”

expr

expr id(intercept)

id(slope)

ELSEVIER

* Alternate (Incorrect) Parse tree for
"slope * x + intercept"

* Our grammar 1s ambiguous

expr

expr

id(slope) expr

id(intercept) g

ELSEVIER

* A better version because 1t 1s unambiguous
and captures precedence

expr — term | expr add_op term

term —> factor | term mult_op factor

factor — id

add_op — +

number | - factor | (expr)

mult_.op — * | /

ELSEVIER

» Parse tree for expression grammar (with left
assoclativity) for 3 + 4 * 5

_

ferm

/\

term factor

factor number (5)

number (3) number (4)

ELSEVIER

* Add && and || to this grammar

 Left-associative
* Precedence: + over && over ||

expr — term | expr add_op term

term — factor | term mult_op factor

|
2
3. factor — id | number | - factor | (expr)
4
5

add_op — + | -
mult.op — * | /

ELSEVIER

Practice with CFGs

* One solution
orexpr => andexpr | orexpr || andexpr
andexpr =2 expr | andexpr && expr

expr — fterm

L. expr add_op term
2. term — factor | term mult_op factor
3

factor — id | number | - factor | (expr)

e

::Hfd_ﬂp —r *+ | -

mult_op — * | / Also replace

oy

with orexpr

Lexical Analysis (or “Scanning”)

e Divides source code into tokens
e Removes comments
e Saves text of 1dentifiers, strings, numbers

* Tags tokens with line numbers, for error messages

Y 1= X;
Zz := 1;

while v > 1 do y = X ; z2 :=1 ; while y
* >1 do z :=z2 *vy ; y :=
zZ = 2 Y
y — 1 od

y : =y -1
od

Scanning

* Suppose we are building an ad-hoc (hand-
written) scanner for a calculator language:
— We read the characters one at a time with look-ahead

 Ifitis one of the one-character tokens
() + - */
we announce that token

o Ifitis a digit, we keep reading digits until we
can’t anymore, then announce a number

« If1iti1s a letter, we keep reading letters and digits

and maybe underscores until we can't anymore,
then announce an identifier

Scanning with floating point

 If1t1s a digit, we keep reading until we find
a non-digit
— 1f that 1s not a . we announce an integer
— otherwise, we keep looking for a real number

— 1f the character after the . 1s not a digit we

announce an integer and reuse the . and the
look-ahead

Pictorial
representation
of a scanner for
calculator
tokens, in the
form of a finite
automaton

space, tab, newline

numiber

nurnber

letter, digit

il or kevword

H SH» IFR

Scanning

 This 1s a deterministic finite automaton
(DFA)

— Lex, scangen, etc. build these things
automatically from a set of regular
€Xpressions

— Specifically, they construct a machine that

accepts the language
identifier | 1nt const

| real const | comment | symbol

Scanning

* We run the machine over and over to get
one token after another

— Nearly universal rule:

 always take the longest possible token from the input
thus foobar 1s foobar and never f or foo or foob

e more to the point, 3.14159 1s areal const and
never 3, ., and 14159

* Regular expressions "generate" a regular
language; DFAs "recognize" it

Scanning

» Scanners tend to be built three ways
— ad-hoc

— semi-mechanical pure DFA
(usually realized as nested case statements)

— table-driven DFA

* Ad-hoc generally yields the fastest, most
compact code by doing lots of special-
purpose things, though good automatically-
generated scanners come very close

Scanning

* Writing a pure DFA as a set of nested case
statements 1s a surprisingly useful
programming technique

— though 1t's often easier to use perl, awk, sed
— for details see Example 2.16

» Table-driven DFA 1s what lex and scangen
produce
— lex/ocamllex in the form of C/OCaml code

— scangen 1n the form of numeric tables and a
separate driver (for details see Figure 2.11-2.12) 2

Scanning

* Note that the rule about longest-possible tokens
means you return only when the next character
can't be used to continue the current token

— the next character will generally need to be saved for
the next token

* In some cases, you may need to peek at more than
one character of look-ahead 1n order to know
whether to proceed

— In Pascal, for example, when you have a 3 and you a
see a dot

* do you proceed (in hopes of getting 3.14)?
or

 do you stop (in fear of getting 3..5)?

Scanning

* In messier cases, you may not be able to get
by with any fixed amount of look-ahead. In
Fortran, for example, we have

DO 5 I = 1,25 1loop
DO 5 I = 1.25 assignment
(to DObLI)

 Here, we need to remember we were 1n a
potentially final state, and save enough
information that we can back up to it, if we
get stuck later

Converting a RE to a DFA

1. Write regular expressions for each construct

— Except keywords — special case of 1dentifiers

Construct NFA from REs
Convert NFA to a DFA (set of subsets)
Minimize DFA (find equivalence classes)

A

Fix up the result
— Longest-possible token rule
— Discard whitespace and comments
— Distinguish keywords from 1dentifiers
— Save text, token location
— Return a special EOF token at end of file

c
(a) Base case O—>©

OQ@ OQ@ Let’s apply this to
O)~~0 d* (.d|d.)d*

(b) Concatenation AB

OO0 O
A 0@
OO0 O =

B A|B

(¢) Alternation

(d) Kleene closure * ELSEVIER

oty
e, 0 e 'f.-'iv'r
Ja”
w Gy

ELSEVIER

NFA to DFA Construction

Each state in the DFA 1is a set
of NFA states

— “Set of subsets”

The start DFA state contains
the start NFA state, plus all
states reachable through
V-transitions

For each input that can be
consumed from one of those
NFA states, we create another
DFA state with the set of

destination states (plus states
from V~transitions)

ELSEVIER

 Start by merging all DFA states into two equivalence classes:
final and non-final

 [teratively 1dentify nondeterministic transitions and split states
to avoid them

ELSEVIER

DFA Minimization
Start
d, . A[l1,2,4,5,8] d @d
. ‘. v.

« Example: Consider the diagram on the
left, derived by merging states from
the one on the right.

 Transitions from ABC on both d and . are nondeterministic

* We can make the d transition deterministic by splitting into a
state representing A&B and a state representing C

* Conversely, we could make the . transition deterministic by
splitting into AC and B

» Let’s take the first (AB and C) and proceed.

* From state (b) we can now make the . transition deterministic
by splitting AB into A and B.

ELSEVIER

Syntax and Lexical Analysis

 We use regular expressions to define tokens

— Concatenation, alternation, repetition

* A scanner uses a DFA to recognize tokens
— Often the DFA 1s machine-generated
— You will define a scanner in assignment 1

* Context-free grammars define higher-level structure
— Must structure the right way to avoid ambiguity
— Interesting parsing challenges — future lecture!

