Lecture Notes: Soundness

17-363/17-663: Programming Language Pragmatics (Fall 2022)
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Well typed programs cannot go wrong.

Robin Milner

In prior lectures, we have formalized both operational semantics and typing rules for a simple
language. The benefit of formal definitions of semantics is that it is clear exactly how a program
should be typechecked and what it should do when executed. However, it’s natural to wonder
whether the semantics are right. Did we give operational semantics for all reasonable programs?
Are the typing rules consistent with the operational semantics?

One of the roles of a type system is to ensure that certain kinds of errors don’t happen. In
particular, we’d like to exclude one particular kind of error: applying operations to inappropri-
ate data. For example, the built-in + operator should be applicable to two numbers, and maybe
strings, but it’s not reasonable to add functions together. Furthermore, if we define a search func-
tion that’s supposed to take a string, we would like the type system to prevent us from accidentally
passing a number to it.

Of course, type systems don’t try to find all errors. They typically do not try to identify logical
errors, where code doesn’t do what it’s supposed to; that is the domain of verification tools. They
also don’t try to identify run-time errors such a divide by zero that are not about the kind of data
being operated on. Instead, they are checking that the program is basically well-structured: all
operations are passed appropriate kinds of data.

What does it mean to say that an error doesn’t happen? In a real implementation, an error
happens when a run-time check fails, for example producing a null pointer exception in Java. Al-
ternatively, in languages such as C with few run-time checks, execution may be undefined by the
standard, meaning that the program may output garbage data. We are modeling the operational
semantics of programs mathematically, and the rules define the execution only of well-formed
programs. In this kind of model, a run-time error occurs when there is no rule to apply: we say
that the execution of the program is stuck.

Since we have a formal semantics, we ought to be able to prove things about it, and a natural
thing to prove is that programs do not get stuck; they run until they produce a result value. How-
ever, we can’t prove this of all programs; a moment’s thought yields examples like (x : nat = z)+1
that are already stuck. We can instead prove that well-typed programs, i.e. programs that type-
check, do not get stuck. This is known as type soundness. Milner summarized this in his famous
quote above, “Well typed programs cannot go wrong,”, using “go wrong” to mean programs that
are stuck.

How can we formulate such a theorem? It’s difficult to do so directly, because in a small-
step operational semantics, programs execute as a sequence of instructions that may be infinite.

Instead, we can prove two theorems about the way programs operate that together imply what
we want. The first theorem, known as progress, states that if a program is well-typed, then either it
is a value already, or it can take a step. That takes care of soundness for a single step of execution,
but how do we reason about programs that operate for many steps? Here the second theorem is
handy: called preservation, it states that if a program is well-typed and takes a step, then the new
program is also well-typed. Applying these two theorems inductively gives us what we mean by
soundness: if a program is well-typed, it will keep taking steps (by progress) and it will remain
well-typed (by preservation, ensuring we can keep applying the progress theorem). This can go
on forever in programs that do not terminate, or it continues until the program is reduced to a
value.

Let’s state and prove such theorems formally. We'll start with a progress theorem about the
language we’ve been formalizing:

Theorem 1 (Progress). If @ - e : 7 then either e value or e — €.
Proof. By induction on the derivation of e |- e : 7, with a case analysis on the last rule used.

T-num

Case e - n : nat : Then we have n value by rule value-number.

Case T-var: does not apply since the environment I' = e is empty and so a variable cannot be
typechecked. (This may seem mysterious—after all most source-level programs have variables—
but it is explained by the fact that in a well-typed program, variables are always substituted with
values before execution reaches that program location).

el e :nat ek ey:nat

Case e e + e : nat

By the induction hypothesis we know that either e; value or e; — ¢€}. In the latter case, we
have e; + e2 — €| + ea by rule congruence-plus-left.

In the case where e; value, we can apply the induction hypothesis to show that either e, value
or e; — €5, Again, in the latter case we have e, + ex — €; + €}, by rule congruence-plus-right.

Finally, if both e; value and e, value where e; = nj,es = no, we have ny + ny — n3 by rule
step-plus.

T-plus

e r:Tyler T
Caseeltzx:19=e€1:79— 11

T

: Then we have z : 75 = e; value by rule value-function.
Case T-apply: similar to the case for T-plus.

Exercise 1. Complete the case for T-let.
This concludes the case analysis.]

Now we will prove the second component of type soundness: that typing is preserved as
programs execute.

Theorem 2 (Type Preservation). IfT't-e: Tand e — € thenT' €' : 7.

Proof. By induction on the derivation of e — €/, with a case analysis on the last rule used.

/

(&) — 61
Case e;(e2) — €] (e2)
e1:m—mnand ' eg: m.

congruence-call-fn
& f : By inversion on the typing derivation, we know that I' I-

We then use the induction hypothesis to conclude thatI' - €} : 75 — 71.
The case is completed by noting that I" - €] (e2) : 71 by the T-apply rule.

Case congruence-call-arg is analogous.

eo value
Case (z : 19 = e1)(e2) — [e2/x]e;
I'ter:m=e:m—>mand 't ey : 73.

We can apply inversion again to discover that the function body can be typed asI',x : 5 Fe; :
71, Wwhere 75 = 73.

We need to prove that I' - [ea/x]e; : 71. But we don’t have a rule that gives us this directly, and
showing it will require inductive reasoning because the substitution operation [e2/z]e; recursively
goes inside e;. Fortunately, we can prove a lemma (below) called substitution that gives us exactly
the result we need based on the typing facts we got from inversion.

step-call
et By inversion on the typing derivation, we know that

Case congruence-plus-left and congruence-plus-right: analogous to congruence-call-fn.
Case step-plus: follows from inversion on the typing rule T-plus followed by application of T-num.

Exercise 2. Complete the cases for congruence-let and step-let.
This concludes the case analysis. O

In order to prove preservation, we needed a lemma showing that substitution preserves typ-
ing. This relates to the hypothetical nature of our typing judgment: having x : 7/ in T is a way of
assuming that some unknown term has type 7/ when we typecheck e. Substitution says that if we
have some actual term €’ has that type in I, we can use it in place of x. This can also be thought
of as a modularity property of the type system: we can typecheck some term e’ separately from
where it is used, and we know that at run time when we plug in ¢/, the typing properties of the
system will not be broken.

Lemma 3 (Substitution). If ',z : 7' Fe:7andT' € : 7/ then T F [¢//z]e : 7.
Proof. By induction on the structure of e. We show three sample cases; the others are similar:

Iz:7'Fe:nat T,z:7 Fey

Case e = e;+eo: By inversion of the typing judgment for e we have I'z:7' kel +es:nat
By the induction hypothesis we know thatI' - [¢//z]e; : natand I' - [¢//z]eg : nat.
Then we have I' - [¢//z]e; + [¢//z]es : nat by the T-plus rule.
We can apply the definition of [¢//z](e1 + e2) = [¢//x]e1 + [¢/x]es to give us the required result
that '+ [¢//z](e1 + e2) : nat.

Case ¢ = z: In this case the variable we are substituting is the same as the variable z in the
expression. By inversion we discover that 7 = 7/. We know from the statement of the theorem
that ' ¢’ : 7/, and €’ is the result of substitution, so we have the required result.

Case e = y, for y # x: In this case the variable = we are substituting for is different the variable y
that is the expression. So substitution has no effect.

By inversion the original expression was typechecked with the T-var rule, and since the substi-
tuted expression is identical and does not rely the additional variable x in the original context, it
can also be typed that way.

:nat T-plus

Dx:7y:mbe:n

Case ¢ = y : 7o = e: By inversion e was typed with therule T,z : 7' Fy:mm = e 12 = 7y Tfn

We will assume without loss of generality that the variable x we are substituting for is different
from the variable y that is bound in the function expression. We can always do this because if the
variables do happen to clash, we can rename the variable in the function expression, giving it
another name that does not clash with z. Renaming a bound variable, and all the uses of that
variable in the scope of the binding, is called a-conversion and always preserves the meaning of
programs. So the substituted expression is y : 72 = [¢//x]e;.

We’d like to apply the induction hypothesis to reason about the typing of the subexpression
[¢//z]e;. But what we have from the premise of T-fn is not quite in the right form. We have
Ix:7,y:mbe 7 butweneed I,z : 7' F ey : 7y for some I that might be different from I'.

We can solve this problem with a property called exchange, which allows us to reorder (i.e.
exchange) the variables in I'. By applying an exchange lemma (proved below) to swap the order
of x and y we can conclude that ',y : 79,2 : 7/ F e; : 71. This matches our induction hypothesis if
weassume anew IV =T,y : 7.

To apply the induction hypothesis, we need €’ to be typed in this same new environment I".
This requires that we add the typing assumption y : 72 to the existing context I' in the judgment
I' ¢ : 7/. We can do this with a lemma called weakening (again, proved below) which allows us
to add new variables to a typing context in a judgment we have already proved. So weakening
will giveus T,y : o ¢’ : 7.

We can now apply the induction hypothesis to learn that I,y : 7 = [¢//z]e; : 7. Now we can
apply the T-var typing rule to finish the case, showing that I' F [¢//z](y : 72 = €1) : T2

Exercise 3. Complete the case for T-let.
The other cases are all analogous to one of the cases given above. O

We now finish by proving the weakening and exchange lemmas used in the substitution
lemma.

Lemma 4 (Weakening). IfT'F e : 7 and x ¢ domain(T') thenT,x : 7' e : 7.

Proof. by induction on the derivation of I' - e : 7. The only interesting case is the T-var rule, which
looks up the definition of a variable, and always chooses the last variable in the context. However,
since we assume z ¢ domain(I'), having the extra variable x in the context won't affect this lookup.
The other cases follow straightforwardly from the induction hypothesis. O

Lemma 5 (Exchange). If ',z : 7,y : Ty Fe:Tandy #x thenl,y : 7y, x : T, Fe:T.

Proof. by induction on the derivation of ', : 7,y : 7y - e : 7. The only interesting case is the
T-var rule, which looks up the definition of a variable, and always chooses the last variable in the
context. However, since we assume y # x, reordering them doesn’t affect this lookup. The other
cases follow straightforwardly from the induction hypothesis. O

