17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP section 2.3

el
EVIER

Prof. Jonathan Aldrich

Copyright © 2016 Elsevier ELS

Top-Down vs. Bottom-Up Parsing

* Top-Down/LL Parsing Intuition
program Start trying to parse a program
Stm t_l st SSS Based on lookahead, refine to stmi_[ist

. then to stmt stmt list
stmt stmt list S$SS

Stack tracks predicted future parsing

* Bottom-Up/LR Parsing Intuition

read A Start by shifting a few tokens
Stmt Reduce tokens to a stm¢, then to a stmt_list
stmt list Continue to shift and reduce tokens
. tokens to recognize another stmt¢ Jeeeay,
stmt list read B

Stack shows what const-r-L;cté. |
stmt list stmt have been recognized so far

read A ;
read B 3.
sum := A + B Lo

5. stmt
write sum 6. stmt
write sum / 2 i

8. expr

9. term

10. term

11

12

13

14.

15.

16.

17.

[A A

o

program — stmt_list $$

stmt_list — stmt_list stmt
stmt_list — stmt

id := expr
read id

write expr
term

expr add_op term
factor

term mult_op factor

. factor — (expr)
. factor — id
. factor — number
add_op — +
add_op — -
mult_op — *
mult_op — /

e

 Initial parse state captured by an item
program — e stmt_list $$

— 1ncludes start symbol, production, and current location

* What we see next might be inside stmt [ist
— So we expand stmt [ist and get a set of items:
program — o stmt_list $$

stmt_list —> o stmt_list stmt
stmt_list —> o stmt

ot ,.‘!r
ELSEVIER

 We can likewise expand stmt to get the item set:

program —; o stmt_list $$
stmt_list — o stmt_list stmt
stmt_list — o stmt

stmt — o 1d := expr
stmt — o read id

stmt — o write expr

e This 1s an SLR parser state
— We’ll call 1t state O

5 3 ?

ELSEVIER

Modeling a Parse with LR Items

* Our starting stack has state 0 on 1t:
0
* Input: read A read B

* From state 0, we shift read onto the stack and

move to state 1:
0O readl

program — o stmt_list $$

stmt_list — o stmt_list stmt

stmt_list — o stmt

stmt —
stmt —

stmt ——

 State 1 represents the following item:

stmt —— read o 1id

o id := expr
e Tead id

e Write expr

Modeling a Parse with LR Items

e stack/1tem: O readl stmt — read e id
 Input: A read B

 From state 1, we shift i d onto the stack
e stack/1tem: Oreadl id 1D’ stmt — read id e

e Input: read B

* Now we reduce to stmt, and put stmt into the input

. program — o stmt_list $$
° .
StaCk / 1tem‘ O stmt_list — o stmt_list stmt
° input: Stmt read B . stmt_list — o stint
stmt —r o 1id := expr

stmt — o read id

stack / item: O
input: stmt read B

We now shift stmt

stack / item: O stmt O’
input: read B

Next we reduce to stmt list
stack / 1tem: O
input: stmt list read B

program — o stmt_list $$

stmt_list — o stmt_list stmt
stmt_list — o stmt

stmt — o id := expr
stmt — o read id

stmt — o write expr

stmtlist —> stmt o

program — o stmt_list $$
stmt_list — o stmt_list stmt
stmt_list — o stmt

stmt — o id := expr
stmt — o read id

stmt — o write expr

stack / item: O
input: stmt list read B

Now we shift stmt list

stack / item: O stmt list 2
input: read B

program — o stmt_list $$

stmt_list — o stmt_list stmt
stmt_list — o stmt

stmt — o id := expr
stmt — o read id

stmt — o write expr

program — stmtlist o $$
stmt_list — stmt_list o stmt
stmt — o id := expr
stmt — o read id

stmt —» o write expr

ELSEVIER

The Characteristic Finite State
Machine (CFSM)

add_o P

add_o Iy

~>(2

write

stmt_lis

write

E‘“"--——-_,_____ expr add_op

Figlll’E 121 Pictorial representation of the CFSM of Figure 2.26. Reduce actions are not
shown.

There are also shift-reduce actions. So our states 0°, 1’ aren’t shown
here: they are “in between” states within a shift-reduce action

Top-of-stack Current input symbol

state sl s e t f a0 mo id lit r w = () + - x /3%
0 s2 b3 - = - - = 83 - 8§81 84 - - = - - - - =
1 - - - - - - - b5 - - - = = - - - - - -
2 - bl = - - - = 83 - 8] 84 = = = - - - - bl
3 - - - - - - - - - - — 83 - - - - - - -
4 = = ‘56 87 b9 - = bl2 bl3 = = = 58 = - - - - -
) - = 8§89 .87 b9 - - bl2 bl3 - = - 58 - - - - - -
6 - = = - - 8l0 - 16 - ™ I’ - = = 'bld bl5 - - 16
7 e = - - sl1 17 - I 7 = = 17 17 17 bl bl7 17
8 -~ = 512 s7 b9 - - bl2 bl3 = = .= 58 - - - - - -
9 - = = = - sl - r4 - ™M 4 = = = bl4 bls - - r4

10 e = = 813 P9 = = Dbl2 b1F = = = s8 = - - - - =
11 _- = = - bl = = Dbl2Z B13 = = = S8 .= - - - - =
12 - - - - - sl0 - - - = ‘= = = b1l bl4 bl5s - - -
13 T - - - sl1 8 - ™ 8 - —- 1™ 8 r8 ble bl7 r8

FigUI'E 128 SLR(l) parse table for the calculator language. Table entries indicate whether to shift (s), reduce (r), or shift
and then reduce (b). The accompanying number is the new state when shifting, or the production that has been recognized
when (shifting and) reducing. Production numbers are given in Fgure 225, Symbol names have been abbreviated for the sake
of formatting. A dash indicates an error. An auxiliary table, not shown here, gives the left-hand-side symbaol and right-hand-side
length for each production.

I-fl S '. [ER

State

progrien —+ » stnt_list §%

stmt_list — o stent_list stent
stint_list —+ o st

st —+ » 1d 1= expr
stmf —+ « Tead 14

stint —+ « WTite expr

st — Tread «» 14

progrisn —+ stmi dis « 4%
stent_tist — st gt o stemr

sttt —+ » 1d 1= expr
sttt — » Tead 1d

stmt —+ « WT1te expr
sht —+ 1d » 1= expr

st —+ Write « expr

EXPr —+ » ferm
expr —+ » expr add_gp term
termn —+ o factor

Transitions
on stad_list shift and goto 2

on sttt shift and reduce (pop 1 state, push st ist on input)
on 1d shift and goto 3

on read shift and goto 1

on write shift and goto 4

on 14 shift and reduce (pop 2 states, push st on input)

on $4% shift and reduce {pop 2 states, push program on input)
on stmt shift and reduce { pop 2 states, push s list on inpat)

on 1d shift and goto 2
on read shift and goto 1
on write shift and goto 4

on := shift and goto 5

on expr shift and goto &
on term shift and goto 7

on factor shift and reduce (pop 1 state, push fersm on input)

State

program —+ « stt_list §4

stemtist —+ « stent list st
stnt_list —+ o st

st —+ o 1d 1= expr
stmi —+ « Tead 1d

st —+ « WT1te expr

stmf —+ Tead « 1d

program —+ stmit st - 49
strtlist —+ st _list o st

sttt —+ o 1d 1= cxpr
stt —+ » Tead 1d
stmt —+ « WTite expr

sttt —+ 1d » 1= cxpr

st —+ WIlte . expr

EXPr —+ » fET

exXpr —+ » expr add_op ferm
term —+ » factor

termn —+ o termn mudt_op factor
factor — & { expr)
factor — » 14

factor — » nuNt=T

stt —+ 1d 1= o expr

exXpr —+ » term
EXpr —+ » cxpr add_op ferm
tern —+ o factor

term —+ o term mudt_op factor
factor —+ « (expr)
factor — » 14

factor — » nuOt=T

St —+ WIlte EXpr e
EXpr —+ expr » add_op ferm

adiop — « +
addop —+ « -

Transitions
on st _list shift and goto 2

on st shift and reduce (pop 1 state, push stet_fist on input)
on 14 shift and goto 2

on read shift and goto 1

on write shift and goto 4

on 14 shift and reduce (pop 2 states, push st on input)

on $% shift and reduce (pop 2 states, push program on input)
on st shift and reduce (pop 2 states, push steniist on input)

on 14 shift and goto 2
on read shift and goto 1
on write shift and goto 4

on := shift and goto 5

on expr shift and goto 6
on term shift and gota 7

on factor shift and reduce (pop 1 state, push term on input)

on (shift and goto 8

on 14 shift and reduce (pop 1 state, push factor on input)
on mmber shift and reduce (pop 1 state, push factor on input)

on expr shift and goto
on termn shift and goto 7

on factor shift and reduce (pop 1 state, push ferm on input)

on (shift and goto 8
on 14 shift and reduce (pop 1 state, push factor on input)
on mumber shift and raduce (pop 1 state, push factor on input)

on FOLLOWT stent) = {1d, read, write, $4} reduce
(pop 2 states, push st on input)
on adid_op shift and goto 10
on + shift and reduce (pop 1 state, push add_op on input)
on - shift and reduce (pop 1 state, push add_op on input)

HEI.I! 116 CFSM for the calculator grammar (Figure 2.25). Basiz and closure iterms in each state are separated by a
harizartal rule. Trivial reduce-cnly states have been eliminated by use of "shift and reduce”” trareitions. (continued)

ELSEVIER
|

State Transitions

7. eXpr —+ term o on FOLLOW! expr) = {14, Tead, vrite, $4,), + -} reduce
termn — term « mudt_op factor (pop 1 state, push expr on input)
- on melt_op shift and goto 11
mliop —+ 8 on + shift and reduce {pop 1 state, push medi_op on input)
multop —+ » on / shift and reduce {pop 1 state, push medt_op on input)
8. factor — (« expr) on expr shift and goto 12
EXpr —+ » term on term shift and goto 7
expr —+ o expr add_op rerm
term —+ » factor on factor shift and reduce (pop 1 state, push ferm on input)
termtt —+ o termi madt_op factor
Sactor —+ « (expr) on (shift and goto 8
factor — .« 14 on 14 shift and reduce (pop 1 state, push factor on input)
factor —+ « nunber on munber shift and reduce (pop 1 state, push factor on input)
9. sttt — 14 = expr . on FOLLOW (stmit) = {14, Tead, writs, §§} reduce
EXpr —+ expr o add_op ferm {pop 3 states, push stat oninput)
_— on adi_op shift and goto 10
addop — » + on + shift and reduce {pop 1 state, push add_op on inpaut)
addop — o - on - shift and reduce (pop 1 state, push add_op on input)

10. expr — expr add_op « ferm on term shift and goto 13

term —+ o factor on factor shift and reduce (pop 1 state, push rerm on inpur)
term —+ « term mudt_op factor

factor —+ » (expr) on € shift and goto 8

facror — » 1a on 14 shift and reduce (pop 1 state, push facror on input)
factor — « nunber on runber shift and reduce (pop 1 state, push factor on input)

11, termn — term miult_op « factor on factor shift and reduce (pop 2 states, push rerm oninput)

factor — « (expr) on { shift and goto 8

factor — & 14 on 14 shift and reduce (pop 1 state, push factor on input)

factor — « nunber on runber shift and reduce (pop 1 state, push factor on input)
12, factor — { expr «) on) shift and reduce {pop 3 states, push factor on inpat)

expr —+ expr « add_op term on adi_op shift and goto 10

addop —+ « + on + shift and reduce {pop 1 state, push add_op on input)

addop —+ o - on - shift and reduce (pop 1 state, push ada_op on input)
13, expr — expr add_op term « on FOLLOW(expr) = {1d, Tead, write, $4,), +, - } reduce

term —+ ferm » madt_op factor {pop 3 states, push expr om input)

_— on med_op shift and goto 11

mltop — » * on + shift and reduce {pop 1 state, push medt_op on input)

mltop —+ » f on / shift and reduce {pop 1 state, push mudi_op on input)

Figure 126 jcontinued)

ELSEVIER
e bV

e Assume you are 1n parsing state 0
and the token stream is write sum / 2

« Show how the parse stack changes as the token
stream 1s consumed

* We’ll do the first action together

ELSEVIER

Parsing if-then-else Statements

* A famous parsing challenge (from Algol) involves 1f-
then-else, where else 1s optional:

stmt .:= 1f exp then stmt

| 1f exp then stmt else stmt
* Consider the phrase:
1f exp then 1f exp then stmt else stmt

 Which then does the el se belong to?

Shift/Reduce Conflicts

 This 1s a shift-reduce conflict
1f exp then 1f exp then stmt . else stmt

 When the el se appears

* We can shift, treating 1t as part of the inner i £ statement, or

* we can reduce the inner i £ statement,
treating the el se as part of the outer 1 £ statement

e How to solve?

— Many existing tools prioritize shift over reduce
 This corresponds to the traditional solution to the i f problem

Shift/Reduce Conflicts

 This 1s a shift-reduce conflict
1f exp then 1f exp then stmt . else stmt

 When the el se appears

* We can shift, treating 1t as part of the inner i £ statement, or
* we can reduce the inner i £ statement,
treating the el se as part of the outer 1 £ statement
 How to solve?

— Many existing tools prioritize shift over reduce
— You can declare productions with precedence

« E.g. giving the if-then-else production higher precedence
than the if-then production

Shift/Reduce Conflicts

 This 1s a shift-reduce conflict
1f exp then 1f exp then stmt . else stmt

 When the el se appears

* We can shift, treating 1t as part of the inner i £ statement, or
* we can reduce the inner i £ statement,
treating the el se as part of the outer 1 £ statement
* How to solve?
— Many existing tools prioritize shift over reduce
— You can declare productions with precedence
— Rewrite the grammar to make 1t LR(1)

An LR(O) If-Then-Else Grammar

stmt — balanced stmt | unbalanced stmt
balanced stmt — if cond then balanced stmt

else balanced stmt
| other stuff

unbalanced stmt — if cond then stmt
| 1f cond then balanced stmt

else unbalanced stmt

Invariant: balanced stmts may be inside unbalanced stmts
— but not vice versa
Unfortunately this grammar 1s LR(0) but not LL(0)

— Have to use precedence in LL parsers
or custom code 1n a recursive-descent parser

Connections to Theory

* A scanner 1s a Deterministic Finite Automaton (DFA)
— 1t can be specified with a state diagram

 An LL or LR parser is a Pushdown Automaton (PDA)

— a PDA can be specified with a state diagram and a stack

* the state diagram looks just like a DFA state diagram, except the arcs
are labeled with <input symbol, top-of-stack symbol> pairs, and in
addition to moving to a new state the PDA has the option of pushing
or popping a finite number of symbols onto/off the stack

e For LL(1) parsers the state machine has only two states:
processing and accepted

 All the action is in the input symbol and top of stack
* LR(1) parsers are richer (and more expressive)

* Error reporting 1s relatively simple

* If you get a token for which there’s no entry in the
current parsing state / top of stack element, signal an
error

e (Can tell the user what tokens would be OK here

Error Recovery

* Nice to report more than one error to the user
« Rather than stopping after the first one

« Simple 1dea: Panic mode

» In C-like languages, semicolons are good recovery spots
* SO on an error:

* read tokens until you get to a semicolon

« discard the parser’s stack (predictions in an LL parser, states in an LR
parser) until you come to a production that has a semicolon

 assume you’ve parsed the semicolon-containing construct,
and continue parsing
« There are ways to do substantially better — see the online
supplement to the textbook

Other Parsing Tools

* Generalized LR (GLR) parser generators

* Accept any grammar — even ambiguous ones!

 This can be good if you have grammars written by nonexperts, as in
SASyLF

« But for a compiler-writer it is dangerous—you may not even know
your grammar is ambiguous, and then your poor users get ambiguity
errors when the parser runs

* Works like an LR parser, but on ambiguity considers all
possible parses in parallel

 Still O(n) if the grammar 1s LR (or “close™)

Other Parsing Tools

» Parsing Expression Grammar (PEG) parser generators
* Sidestep ambiguity by always favoring the first production

e Same danger as GLR parsers — you may not know your
grammar 1s ambiguous

 Still used some 1n practice (e.g. in Python)
» About as efficient as LL or LR in practice
« Like LR, PEG grammars can be cleaner than LL grammars

* Requires extreme care to get right — must think algorithmically
instead of declaratively

* Guido van Rossum, the developer of Python, saw this as an advantage

