17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP section 2.3

el
EVIER

Prof. Jonathan Aldrich

Copyright © 2016 Elsevier ELS

Parsing

* A context-free grammar (CFG) 1s a generator for
a context-free language (CFL)

— A parser 1s a language recognizer

* There are an infinite number of grammars for
every context-free language
— Not all grammars are created equal, however
— Ambiguity
— Understandability

— Performance

Parsing

* It turns out that for any CFG we can create
a parser that runs in O(n?) time
* E.g. the Generalized LR (GLR) parser used to
parse expressions in SASyLF
« O(n?) time is clearly unacceptable for a
parser 1n a compiler - too slow

e It’s OK 1n SASyLF because we only write
small expressions in proofs

Parsing

» Fortunately, there are large classes of
grammars for which we can build parsers
that run 1n linear time

— The two most important classes are called
LL and LR

» LL stands for
'Left-to-right, Leftmost derivation'.

* LR stands for
'Left-to-right, Rightmost derivation’

Leftmost vs. Rightmost Derivations

expr — id | number | - expr | (expr)
expr op expr
op = #|=| %]/

Leftmost derivation

* Always chooses the left-most nonterminal to
replace

expr = expr op expr
=> expr op expr op expr
= 1d op expr op expr
= 1d * expr op expr
= 1d * i1d op expr
= 1d *id + expr
—id * id + id

* Note: both derivations produce the same tree!

expr
S
expr op expr
/I\
expr op expr -||- id(intc|ercept)
| |
id(slope) * id(x)

Rightmost derivation

* Always chooses the right-most nonterminal to
replace

expr = expr op expr
= expr op id
= expr t+id
= expr op expr + id
= expr op id + id
= expr *1id +1d
= 1d *1id +1d

Parsing

* LL parsers are also called 'top-down', or 'predictive’
parsers & LR parsers are also called 'bottom-up', or
'shift-reduce’ parsers
« We’ll discuss LL parsers today, and LR parsers in the next

lecture

* There are several important sub-classes of LR parsers

~ SLR
— LALR

 We won't be going into detail on the differences
between them

Parsing

* You commonly see LL or LR (or whatever) written with a
number 1n parentheses after it

— This number indicates how many tokens of look-ahead are
required in order to parse

— Almost all real compilers use one token of look-ahead
— Some tools let you special-case to look further ahead for certain constructs
* The expression grammar (with precedence and
associativity) you saw before is LR(1), but not LL(1)

« Every CFL that can be parsed deterministically has an
SLR(1) grammar (which 1s LR(1))

e Let’s start with the following statement grammar

e This is not an LL(1) grammar — we’ll see how we need to adapt it

program —
stmt list —
|
stmt —
|
|
|
id list —
|

stmt list $$$
stmt stmt list

g
id := 1id
read 1id

write 1d
id (1d list)
id

id list , 1d

ELS

EVIER

, . program — stmt list $S$$
e Let’s parse this program: , - ,
stmt list - stmt stmt list
read A | e
process (A) stmt - id := id
write A | read id
| write id
| id (id list)
« Here’s the parse sequence id list . id
program | id list , 1id
stmt list $$$
stmt stmt list $$$ // based on lookahead = read
read id stmt list $$$ // based on lookahead = read
stmt list $$S // accept read and id tokens
// what to do here?
// 1d lookahead => assign or call
ELSE

VIER

 Whenever making a choice between two productions of a
nonterminal...

It must be possible to predict which 1s taken based on 1
lookahead token

ELSEVIER

* Problems trying to make a grammar LL(1)

— common prefixes
* solved by "left-factoring”. Example:
stmt — 1d := expr
| 1d (arg list)

« This can be expressed instead:
stmt -~ 1d 1id stmt tail
id stmt tail - := expr
| (arg list)
« we can left-factor mechanically

LL Parsing

* Problems trying to make a grammar LL(1)

— left recursion: another thing that LL parsers can't
handle

« Example of left recursion:

1d list - 1d | 1d list , id

e This can be expressed 1nstead:

1d list - 1d 1d list tail
id list tail - , 1d id 1list tail
| €

« we can get rid of all left recursion mechanically in
any grammar

LL Parsing

* Note that eliminating left recursion and
common prefixes does NOT make a
grammar LL

— there are infinitely many non-LL
LANGUAGES, and the mechanical
transformations work on them just fine

— the few that arise 1n practice, however, can
generally be handled with kludges

program
stmt list

stmt

1d stmt tail

id list
id list tail

stmt list $$$
stmt stmt list

id 1d stmt tazil
read 1d
write 1d

(1d list)
id 1d list tail
id 1d list tail

ELSEVIER

program - stmt list $S9

* Let’s parse this program: stmt list — stmt stmt list | ¢
read A stmt —~ id id stmt tail
process (A) | read id
Write A | write id

id stmt tail - := id

| (id list)

« Here’s the parse sequence id_list - 1d 1id_list_tail
program id list tail - , id id list tail | =

read id stmt list $$$ // several steps here

stmt list $$$ // accept read and id tokens

stmt stmtlist $S$$ // based on id lookahead

id id stmt tail stmtlist $$$ // based on id lookahead

id stmt tail stmtlist $$$ // accept id token

(id) stmtlist $$S // based on (lookahead

stmtlist $$S // accept (, id, and) tokens

write 1d stmtlist $$$ // two steps, based on id lookahead

stmtlist $$$ // accept write and id tokens iiéhﬂv
$3S // based on S$S8$ lookahead ELSEVIER

* Convert the following grammar to LL(1) form

program - expr $$$
expr - term | expr + term
term - 1id | 1id (expr)

« What are the advantages/disadvantages of your LL(1) grammar compared
to the original one (which was LR(1))?

ELSEVIER

program
expr
expr tail

term
term tail

— =1 1

don't find it as pretty
a RHS together!

makes up for this weakness

expr $S5$

term expr tail

+ term expr tail
£

id term_tail
(expr)
&

 Like the bottom-up grammar, this one captures
associativity and precedence, but most people

— for one thing, the operands of a given operator aren't in

— however, the simplicity of the parsing algorithm often

* There are two approaches to LL top-down parsing
» Recursive Descent — typically handwritten

» Parse table — typically generated

ELSEVIER
e bV

procedure match(expected)

else parse_error

—— this is the start routine:
procedure program)
case input_token of
id, read, write, $$:
stmt_list()
match($$)
otherwise parse_error

procedure stmt_list()
case input_token of
id, read, write : stmt(); stmt_list()
$$: skip —— epsilon production
otherwise parse_error

mmDrocedure stmti()

if input_token = expected then consume_input_token()

ELSEVIER
)

procedure stmt()
case input_token of
id : match(id); match(:=); expr()
read : match(read); match(id)
write : match(write); expr()
otherwise parse_error

procedure expr()
case input_token of
id, number, (: term(); term_tail()
otherwise parse_error

procedure term_tail()
case input_token of
+, = : add_op(); term(); term_tail()
), id, read, write, $$:
skip —— epsilon production
otherwise parse_error

procedure term()
case input_token of
id, number, (: factor(); factor_tail()
otherwise parse_error

procedure factor_tail()
case input_token of
%, / : mult_op(); factor(); factor_tail()
+, -,), id, read, write, 3:
skip —— epsilon production
otherwise parse_error

procedure factor()
case input_token of
id : match(id)
number : match(number)
(: match((); expr(); match())
otherwise parse_error

procedure add_op()
case input_token of
+ . match(+)
- . match(-)
otherwise parse_error

procedure mult_op()
case input_token of
* . match(x)
/ : match(/)
otherwise parse_error

LL Parsing

» Table-driven LL parsing: you have a big
loop 1 which you repeatedly look up an
action 1n a two-dimensional table based on
current leftmost non-terminal and current
input token. The actions are

(1) match a terminal
(2) predict a production
(3) announce a syntax error

« LL(1) parse table for parsing for calculator

language

Top-of-stack Current input token
nonterminal id number read write := () + - *x / §3

program | 1
stmt_list | 2
stmt | 4 ==
¢
9

|
by B S I
eI NI)

|

|

|

|

|

|

|

(%]

expr
term_taul ;
term | 10 10 - = TR | [B = = = = =
factor_tail | 12 -~ 12 12 -~ - 12 12 12 11 11 12
factor | 14 15 = = =R = w oms ms -
add-op | — —~ — - - = = 1§ F = = =
mult_op | — - - - - - = = = 18 19 -

|
e
0

|

|
0
oo
0

|

|
0

T

e A G
ELSEVIER
T

LL Parsing

* To keep track of the left-most non-terminal,
you push the as-yet-unseen portions of
productions onto a stack

— for details see Figure 2.21 in book
— similar to what we wrote above

» The key thing to keep in mind is that the
stack contains all the stuff you expect to see
between now and the end of the program

— what you predict you will see

LL Parsing

* The algorithm to build predict sets 1s
tedious (for a "real" sized grammar), but
relatively simple

* It consists of three stages:
— (1) compute FIRST sets for symbols

— (2) compute FOLLOW sets for non-terminals
(this requires computing FIRST sets for some
Strings)

— (3) compute PREDICT sets or table for all
productions

[t 1s conventional in general discussions of grammars to use

— lower case letters near the beginning of the alphabet for terminals

— lower case letters near the end of the alphabet for strings of terminals
— upper case letters near the beginning of the alphabet for non-terminals
— upper case letters near the end of the alphabet for arbitrary symbols

— @reek letters for arbitrary strings of symbols

ELSEVIER
|

e Algorithm First/Follow/Predict:

— FIRST () == {a : a -* a B}
U (1f oo =>* ¢ then {g} else NULL)

— FOLLOW(A) == {a : S ' o A a B}
U (1f S -* o A then {¢} else NULL)

— PREDICT (A - X, ... X) ==
(FIRST (X, ... X)) - {g})

U (if X,, ..., X —* g then FOLLOW (A)
else NULL)

 Details following...

£

ELSEVIER

program — stmt_list $%

stmt_list — stmt stmt_list

stint_list —s €

sttnt — id := expr

stmf — read id

stmt — write expr

expr — term term_tail

term_tail — add_op term term_tail
term_tail — €

termt — factor factor_tail
factor_tail — mult_op factor factor_tail
factor_tail —s ¢

factor — (expr)

factor — id

factor — number

add_op — +

add_op — -

mult_op — *

mult_op — /

$$ € FOLLOW st list)

EPS(stmnt_list) = true
id € FIRST(stmt)
read € FIRST(stmt)
write € FIRST(stmt)

EPS(term_tail) = true

EPS(factor_tail) = true

(€ FIRST(factor) and) € FOLLOW(expr)
id € FIRST(factor)

number € FIRST(factor)

+ € FIRST(add_op)

- € FIRST(add_op)

* € FIRST(mult_op)

/ € FIRST(mult_op)

Figure 2.2 “Obvious” facts (right) about the LL(1) calculator grammar (left).

_-rj"" . 'ki

ol VTS R
ELSEVIER

FIRST expr {), id, read, write, $§}

program {id, read, write, $$} term_tail {), id, read, write, $$}
stmi_list {id, read, write, ¢} term {+, -,), id, read, write, $3}
stmt {id, read, write} factor_tail {+, -,), id, read, write, $$}
expr { (, id, number } factor {+, =, *,/,), id, read, write, $$}
term tail {+, =, €} add_op {(, id, number }
term { (, id, number } mult_op { (, id, number}
factor_tail {*, /, €} _ .
factor { (, id, number } PREDICT . .
_ Vo 1 program — stmt_list $$ {id, read, write, K $$}
add_op {+, =} 9 ; . : -
_ stmi_list — stmt stini_list {id, read, write}
multap{%, £} | 3 stmtlist — e {88}
Also note that FIRST(a) = {a} ¥ tokens a. A Wl T Teeagit P
FOLLOW 5 stml — read id |read}
id {+, -, %, /,), :=, id, read, urite, $§} 6 stmt — write expr {write}
number {+, -, *, /, J, id, read, write, $§} 7 expr — term term_tail {(, id, number }
read {id} 8 term.tail — add_op term term_tail {+, -}
write {(, id, number} 9 term.tail — ¢ {), id, read, write, §$}
({(, id, number } 10 term — factor factor_tail {(, id, number}

)4+, =, % /,), id, read, write, $$} 11 factor_tail — mult_op factor factor_tail {*, /}
:= {(, id, number } 12 factor_tail — ¢ {+, =,), id, read, write, §3$}
+{(, id, number } 13 factor — (expr) {(}

- {(, id, number } 14 factor — id {id}

* {(, id, number} 15 factor — number {number}

/4 (, id, number } 16 add_op — + {+}

$8 {e} 17 add.op — - {-}

program {e} 18 muli_op — * {*}

stmit_list {$$} 19 mulicop —/ {/}

stmt {id, read, write, $$}

1+ *-'.

ELSEVIER

Figure 2.22: FIRST, FOLLOW, and PREDICT sets for the calculator language.

LL Parsing

 If any token belongs to the predict set of
more than one production with the same
LHS, then the grammar 1s not LL(1)

* A conflict can arise because
— the same token can begin more than one RHS

— 1t can begin one RHS and can also appear after

the LHS 1n some valid program, and one
possible RHS 1s ¢

