
Copyright © 2016 Elsevier

Syntax and Lexical Analysis

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 2 through section 2.2

Prof. Jonathan Aldrich

Specifying Syntax

• Let’s start by specifying the idea of a digit:

• From this we can build natural numbers:

• Simple concepts like these can be expressed with
regular expressions

Regular Expressions

• A regular expression is one of the following:
– A character

– The empty string, denoted by 

– Two regular expressions concatenated

– Two regular expressions separated by | (i.e., or)

– A regular expression followed by the Kleene star
* (concatenation of zero or more strings)

Regular Expressions

• Numerical constants accepted by a simple
hand-held calculator:

Practice with Regular Expressions

• Define a regular expression for C-style comments
• You may use abbreviations like non-* or newline

• You may use Kleene + (1 or more) in addition to Kleene *

Practice with Regular Expressions

• Define a regular expression for C-style comments
• You may use abbreviations like non-* or newline

• You may use Kleene + (1 or more) in addition to Kleene *

• One solution (from the textbook)

comment  /* (non-* | * non-/)* *+ /

| // (non-newline)* newline

From Tokens to Grammar

• Regular expressions are great for describing tokens
– The smallest meaningful units of syntax – numbers, symbols,

keywords, and identifiers

– These constructs have no interesting recursive structure

• But real programs have recursive structure, even in
expressions like 2 * (x + (y /3))

• To capture higher-level syntax we need context-free
grammars

Context-Free Grammars

• A calculator expression grammar is recursive:

expr is defined in
terms of itself!

Context-Free Grammars (CFGs)

• Anatomy of a CFG
• In Backus-Naur Form (BNF)

production

start symbol S

nonterminals N

terminals T

A symbol is a terminal
or a nonterminal

Context-Free Grammars

• In this grammar,
generate the string
"slope * x + intercept"

This is called a
derivation

Context-Free Grammars

• Parse tree for expression grammar for
"slope * x + intercept"

Context-Free Grammars

• Alternate (Incorrect) Parse tree for
"slope * x + intercept"

• Our grammar is ambiguous

Context-Free Grammars

• A better version because it is unambiguous
and captures precedence

Context-Free Grammars

• Parse tree for expression grammar (with left
associativity) for 3 + 4 * 5

Practice with CFGs

• Add && and || to this grammar
• Left-associative

• Precedence: + over && over ||

Practice with CFGs

• One solution

orexpr  andexpr | orexpr || andexpr

andexpr  expr | andexpr && expr

Lexical Analysis (or “Scanning”)

• Divides source code into tokens

• Removes comments

• Saves text of identifiers, strings, numbers

• Tags tokens with line numbers, for error messages

y := x;
z := 1;
while y > 1 do
z := z * y;
y := y – 1

od

y := x ; z := 1 ; while y
> 1 do z := z * y ; y :=
y – 1 od

Scanning

• Suppose we are building an ad-hoc (hand-
written) scanner for a calculator language:
– We read the characters one at a time with look-ahead

• If it is one of the one-character tokens
() + - * /

we announce that token

• If it is a digit, we keep reading digits until we
can’t anymore, then announce a number

• If it is a letter, we keep reading letters and digits
and maybe underscores until we can't anymore,
then announce an identifier

Scanning with floating point

• If it is a digit, we keep reading until we find
a non-digit
– if that is not a . we announce an integer

– otherwise, we keep looking for a real number

– if the character after the . is not a digit we
announce an integer and reuse the . and the
look-ahead

Scanning

• Pictorial
representation
of a scanner for
calculator
tokens, in the
form of a finite
automaton

Scanning

• This is a deterministic finite automaton
(DFA)
– Lex, scangen, etc. build these things

automatically from a set of regular
expressions

– Specifically, they construct a machine that
accepts the language
identifier | int const
| real const | comment | symbol
| ...

Scanning

• We run the machine over and over to get
one token after another
– Nearly universal rule:

• always take the longest possible token from the
input
thus foobar is foobar and never f or foo or foob

• more to the point, 3.14159 is a real const and
never 3, ., and 14159

• Regular expressions "generate" a regular
language; DFAs "recognize" it

Scanning

• Scanners tend to be built three ways
– ad-hoc

– semi-mechanical pure DFA
(usually realized as nested case statements)

– table-driven DFA

• Ad-hoc generally yields the fastest, most
compact code by doing lots of special-
purpose things, though good automatically-
generated scanners come very close

Scanning

• Writing a pure DFA as a set of nested case
statements is a surprisingly useful
programming technique
– though it's often easier to use perl, awk, sed

– for details see Example 2.16

• Table-driven DFA is what lex and scangen
produce
– lex (flex) in the form of C code

– scangen in the form of numeric tables and a
separate driver (for details see Figure 2.11-2.12)

Scanning

• Note that the rule about longest-possible tokens
means you return only when the next character
can't be used to continue the current token
– the next character will generally need to be saved for

the next token

• In some cases, you may need to peek at more than
one character of look-ahead in order to know
whether to proceed
– In Pascal, for example, when you have a 3 and you a

see a dot
• do you proceed (in hopes of getting 3.14)?

or

• do you stop (in fear of getting 3..5)?

Scanning

• In messier cases, you may not be able to get
by with any fixed amount of look-ahead. In
Fortran, for example, we have

DO 5 I = 1,25 loop
DO 5 I = 1.25 assignment

(to DO5I)

• Here, we need to remember we were in a
potentially final state, and save enough
information that we can back up to it, if we
get stuck later

Converting a RE to a DFA

1. Write regular expressions for each construct
– Except keywords – special case of identifiers

2. Construct NFA from REs

3. Convert NFA to a DFA (set of subsets)

4. Minimize DFA (find equivalence classes)

5. Fix up the result
– Longest-possible token rule

– Discard whitespace and comments

– Distinguish keywords from identifiers

– Save text, token location

– Return a special EOF token at end of file

RE to NFA Construction

Syntax and Lexical Analysis

• We use regular expressions to define tokens
– Concatenation, alternation, repetition

• A scanner uses a DFA to recognize tokens
– Often the DFA is machine-generated

– You will define a scanner in assignment 1

• Context-free grammars define higher-level structure
– Must structure the right way to avoid ambiguity

– Interesting parsing challenges – future lecture!

