
Copyright © 2016 Elsevier and Jonathan Aldrich

Code Improvement

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 17

Prof. Jonathan Aldrich

Introduction

• We discussed target code generation
– Typically produces correct but highly suboptimal code

• redundant computations

• inefficient use of the registers, multiple functional units, and cache

• This chapter takes a look at code improvement: the
phases of compilation devoted to generating good code
– we interpret “good” to mean fast

– occasionally we also consider program transformations to
decrease memory requirements

– we sometimes say “optimization,” but the code produced is
rarely truly optimal

Introduction

• In a very simple compiler, we can use a peephole
optimizer to peruse already-generated target code for
obviously suboptimal sequences of adjacent instructions

• At a slightly higher level, we can generate near-optimal
code for basic blocks
– a basic block is a maximal-length sequence of instructions that

will always execute in its entirety (assuming it executes at all)

– in the absence of hardware exceptions, control never enters a
basic block except at the beginning, and never exits except at
the end

Introduction

• Code improvement at the level of basic blocks is known as
local optimization
– elimination of redundant operations (unnecessary loads, common sub-

expression calculations)

– effective instruction scheduling and register allocation

• At higher levels of aggressiveness, compilers employ
techniques that analyze entire subroutines for further speed
improvements

• These techniques are known as global optimization
– multi-basic-block versions of redundancy elimination

– instruction scheduling, and register allocation

– code modifications designed to improve the performance of loops

Introduction

• Both global redundancy elimination and loop
improvement typically employ a control flow graph
representation of the program
– Use a family of algorithms known as data flow analysis

(flow of information between basic blocks)

• Recent compilers perform various forms of
interprocedural code improvement

• Interprocedural improvement is difficult
– subroutines may be called from many different places

• hard to identify available registers, common subexpressions, etc.

– subroutines are separately compiled

Phases of Code Improvement
• We will concentrate in our discussion on the forms

of code improvement that tend to achieve the
largest increases in execution speed, and are most
widely used
– Compiler phases to implement these improvements is

shown in Figure 17.1

Phases of Code Improvement

Phases of Code Improvement

• The machine-independent part of the back end
begins with intermediate code generation
– identifies fragments of the syntax tree that correspond to

basic blocks

– creates a control flow graph in which each node contains
a sequence of three-address instructions for an idealized
machine (unlimited supply of virtual registers)

• The machine-specific part of the back end begins
with target code generation
– strings the basic blocks together into a linear program

• translates each block into the instruction set of the
target machine and generating branch instructions that
correspond to the arcs of the control flow graph

Phases of Code Improvement

• Machine-independent code improvement has
three separate phases
1. Local redundancy elimination: identifies and

eliminates redundant loads, stores, and computations
within each basic block

2. Global redundancy elimination: identifies similar
redundancies across the boundaries between basic
blocks (but within the bounds of a single subroutine)

3. Loop improvement: effects several improvements
specific to loops
• these are particularly important, since most programs spend

most of their time in loops.

• Global redundancy elimination and loop improvement may
actually be subdivided into several separate phases

Phases of Code Improvement

• Machine-specific code improvement has four
separate phases
– Preliminary and final instruction scheduling are

essentially identical (Phases 1 & 3)

– Register allocation (Phase 2) and instruction scheduling
tend to interfere with one another
• the instruction schedules minimize pipeline stalls which tend to

increase the demand for architectural registers (register pressure)

• we schedule instructions first, then allocate architectural registers,
then schedule instructions again
– If it turns out that there aren’t enough architectural registers, the

register allocator will generate additional load and store instructions
to spill registers temporarily to memory

– the second round of instruction scheduling attempts to fill any
delays induced by the extra loads

Peephole Optimization

• A relatively simple way to significantly improve the
quality of naive code is to run a peephole optimizer
over the target code
– works by sliding a several instruction window (a peephole)

over the target code, looking for suboptimal patterns of
instructions

– the patterns to look for are heuristic
• patterns to match common suboptimal idioms produced by a

particular front end

• patterns to exploit special instructions available on a given machine

• A few examples are presented in what follows

Peephole Optimization

• Elimination of redundant loads and stores
– The peephole optimizer can often recognize that the

value produced by a load instruction is already
available in a register
r2 := r1 + 5
i := r2
r3 := i
r3 := r3 × 3

becomes
r2 := r1 + 5
i := r2
r3 := r2 × 3

Peephole Optimization

• Constant folding

• A naive code generator may produce code that
performs calculations at run time that could
actually be performed at compile time
– A peephole optimizer can often recognize such

code

r2 := 3 × 2

becomes
r2 := 6

Peephole Optimization
• Constant propagation

– Sometimes we can tell that a variable will have a constant value at
a particular point in a program

– We can then replace occurrences of the variable with occurrences
of the constant
r2 := 4
r3 := r1 + r2
r2 := . . .

becomes
r2 := 4
r3 := r1 + 4
r2 := . . .

and then
r3 := r1 + 4
r2 := . . .

Peephole Optimization

• Common subexpression elimination
– When the same calculation occurs twice within the

peephole of the optimizer, we can often eliminate the
second calculation:
r2 := r1 × 5
r2 := r2 + r3
r3 := r1 × 5

becomes
r4 := r1 × 5
r2 := r4 + r3
r3 := r4

– Often, as shown here, an extra register will be needed
to hold the common value

Peephole Optimization

• It is natural to think of common subexpressions as
something that could be eliminated at the source
code level, and programmers are sometimes
tempted to do so

• The following, for example,
x = a + b + c;
y = a + b + d;

could be replaced with
t = a + b;
x = t + c;
y = t + d;

Peephole Optimization
• Copy propagation

– Even when we cannot tell that the contents of register b will be
constant, we may sometimes be able to tell that register b will
contain the same value as register a

• replace uses of b with uses of a, so long as neither a nor b is modified

r2 := r1
r3 := r1 + r2
r2 := 5

becomes
r2 := r1
r3 := r1 + r1
r2 := 5

and then
r3 := r1 + r1
r2 := 5

Peephole Optimization

• Strength reduction
– Numeric identities can sometimes be used to replace a

comparatively expensive instruction with a cheaper one
• In particular, multiplication or division by powers of two can be

replaced with adds or shifts:

r1 := r2 × 2
becomes

r1 := r2 + r2 or r1 := r2 << 1

r1 := r2 / 2
becomes

r1 := r2 >> 1

Peephole Optimization

• Elimination of useless instructions
– Instructions like the following can be dropped

entirely:
r1 := r1 + 0
r1 := r1 × 1

• Filling of load and branch delays
– Several examples of delay-filling transformations

are presented in Chapter 5 of the textbook

• Exploitation of the instruction set
– Particularly on CISC machines, sequences of

simple instructions can often be replaced by a
smaller number of more complex instructions

Redundancy Elimination in Basic Blocks

• Let’s look at improving intermediate code
generated from this C program:

Redundancy Elimination in Basic Blocks
• We employ a medium

level intermediate form
(IF) for control flow
– Every calculated value is

placed in a separate
register

– To emphasize virtual
registers (of which there
is an unlimited supply),
we name them v1, v2, . .
.

– We use r1, r2, . . . to
represent architectural
registers in Section 17.8.

Redundancy Elimination in Basic Blocks

• To improve the code within basic blocks, we need to
– minimize loads and stores
– identify redundant calculations

• There are two techniques usually employed
1. translate the syntax tree for a basic block into an

expression DAG (directed acyclic graph) in which
redundant loads and computations are merged into
individual nodes with multiple parents

2. similar functionality can also be obtained without an
explicitly graphical program representation, through a
technique known as local value numbering

• We describe the last technique below

Redundancy Elimination in Basic Blocks

• Value numbering assigns the same name (a “number”)
to any two or more symbolically equivalent
computations (“values”), so that redundant instances
will be recognizable by their common name

• Our names are virtual registers, which we merge
whenever they are guaranteed to hold a common value

• While performing local value numbering, we will also
implement
– local constant folding
– constant propagation, copy propagation
– common subexpression elimination
– strength reduction
– useless instruction elimination

Redundancy Elimination in Basic Blocks
• Let’s do value numbering for a simpler example:

v1 := x

v2 := 1

v3 := v1 + v2

y := v3

v4 := x

v5 := 1

v6 := v4 + v5

x := v6

v7 := x

v8 := 3

v9 := 1

v10 := v8 + v9

v11 := v7 * v10

v12 := v11 * v9

What the source might look like:

y := x + 1;

x := x + 1;

return x * (3+1) * 1;

Your Turn: Value Numbering
• Perform value numbering optimization on the following:

v1 := x

v2 := 3

v3 := v1 + v2

v4 := 1

v5 := x

v6 := 2

v7 := v4 + v6

v8 := v5 + v7

v9 := v8 - v3

Redundancy Elimination in Basic Blocks

Global Redundancy and
Data Flow Analysis
• We now concentrate on the elimination of

redundant loads and computations across the
boundaries between basic blocks

• We translate the code of our basic blocks into
static single assignment (SSA) form, which will
allow us to perform global value numbering

• Once value numbers have been assigned, we shall
be able to perform
– global common subexpression elimination
– constant propagation
– copy propagation

Global Redundancy and
Data Flow Analysis
• In a compiler both the translation to SSA form

and the various global optimizations would be
driven by data flow analysis.
– We detail the problems of identifying

• common subexpressions
• useless store instructions

– We will also give data flow equations for the
calculation of reaching definitions, used to move
invariant computations out of loops

• Global redundancy elimination can be structured
in such a way that it catches local redundancies as
well, eliminating the need for a separate local pass

Global Redundancy and
Data Flow Analysis
• Value numbering, as introduced earlier, assigns a

distinct virtual register name to every
symbolically distinct value that is loaded or
computed in a given body of code
– It allows us to recognize when certain loads or

computations are redundant.

• The first step in global value numbering is to
distinguish among the values that may be written
to a variable in different basic blocks
– We accomplish this step using static single assignment

(SSA) form

Global Redundancy and
Data Flow Analysis
• For example, if the instruction v2 := x is

guaranteed to read the value of x written by the
instruction x3 := v1, then we replace v2 := x
with v2 := x3

• If we cannot tell which version of x will be read, we
use a hypothetical function φ to choose among the
possible alternatives
– we won’t actually have to compute φ-functions at run time

• the only purpose is to help us identify possible code
improvements

– we will drop them (and the subscripts) prior to target code
generation

Global Redundancy and
Data Flow Analysis

• With flow-dependent values determined by φ-
functions, we are now in a position to perform
global value numbering
– As in local value numbering, the goal is to merge any

virtual registers that are guaranteed to hold
symbolically equivalent expressions

– In the local case, we were able to perform a linear pass
over the code

– We kept a dictionary that mapped loaded and
computed expressions to the names of virtual registers
that contained them

Global Redundancy and
Data Flow Analysis

• This approach does not suffice in the global case,
because the code may have cycles
– The general solution can be formulated using data flow
– It can also be obtained with a simpler algorithm that

begins by unifying all expressions with the same top-level
operator
• In the end, repeatedly separates expressions whose operands are

distinct
• It is quite similar to the DFA minimization algorithm of Chapter

2

• We perform this analysis for our running example
informally

Global Redundancy and
Data Flow Analysis

Global Redundancy and
Data Flow Analysis

Reuse registers
v1 and v2 from
Block 1

Reuse v1
and v17

• Many instances of data flow analysis can be cast
in the following framework:
1. four sets for each basic block B, called InB, OutB, GenB,

and KillB;
2. values for the Gen and Kill sets;
3. an equation relating the sets for any given block B;
4. an equation relating the Out set of a given block to the

In sets of its successors, or relating the In set of the
block to the Out sets of its predecessors; and (often)

5. certain initial conditions

Global Redundancy and
Data Flow Analysis

• The goal of the analysis is to find a fixed point of
the equations: a consistent set of In and Out sets
(usually the smallest or the largest) that satisfy
both the equations and the initial conditions
– Some problems have a single fixed point

– Others may have more than one
• we usually want either the least or the greatest fixed point

(smallest or largest sets)

Global Redundancy and
Data Flow Analysis

• In the case of global common subexpression
elimination, InB is the set of expressions (virtual
registers) guaranteed to be available at the
beginning of block B
– These available expressions will all have been set by

predecessor blocks
– OutB is the set of expressions guaranteed to be

available at the end of B
– KillB is the set of expressions killed in B: invalidated by

assignment to one of the variables used to calculate the
expression, and not subsequently recalculated in B

– GenB is the set of expressions calculated in B and not
subsequently killed in B

Global Redundancy and
Data Flow Analysis

• The data flow equations for available
expression analysis are:

Global Redundancy and
Data Flow Analysis

• Our initial condition is In1 = : no expressions are
available at the beginning of execution

• Available expression analysis is known as a
forward data flow problem, because information
flows forward across branches: the In set of a
block depends on the Out sets of its predecessors
– We will see an example of a backward data flow

problem later

• We calculate the desired fixed point of our
equations in an inductive (iterative) fashion, much
as we computed first and follow sets in Chapter 2

• Our equation for InB uses intersection to insist
that an expression be available on all paths into B
– In our iterative algorithm, this means that InB can only

shrink with subsequent iterations

Global Redundancy and
Data Flow Analysis

Example of Available Expressions
Analysis

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
v8 := c / 2

Exercise: Apply global value numbering and
available expressions to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v1+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3

Global Redundancy and
Data Flow Analysis

Global Redundancy and
Data Flow Analysis

• We turn our attention to live variable analysis -
very important in any subroutine in which global
common subexpression analysis has eliminated
load instructions

• Live variable analysis is a backward flow problem
• It determines which instructions produce values

that will be needed in the future, allowing us to
eliminate dead (useless) instructions
– in our example we consider only values written to

memory and with the elimination of dead stores
– applied to values in virtual registers as well, live

variable analysis can help to identify other dead
instructions

Global Redundancy and
Data Flow Analysis

• For this instance of data flow analysis
– InB is the set of variables live at the beginning of block B
– OutB is the set of variables live at the end of the block
– GenB is the set of variables read in B without first being

written in B
– KillB is the set of variables written in B without having

been read first

• The data flow equations are:

Global Redundancy and
Data Flow Analysis

Running live variable analysis and
dead code elimination

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
v8 := c / 2

Exercise: Apply live variable analysis and
dead code elimination to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v1+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3

Global Redundancy and
Data Flow Analysis

