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Introduction

• We discussed target code generation
– Typically produces correct but highly suboptimal code

• redundant computations

• inefficient use of the registers, multiple functional units, and cache 

• This chapter takes a look at code improvement: the 
phases of compilation devoted to generating good code
– we interpret “good” to mean fast

– occasionally we also consider program transformations to 
decrease memory requirements

– we sometimes say “optimization,” but the code produced is 
rarely truly optimal



Introduction

• In a very simple compiler, we can use a peephole 
optimizer to peruse already-generated target code for 
obviously suboptimal sequences of adjacent instructions

• At a slightly higher level, we can generate near-optimal 
code for basic blocks
– a basic block is a maximal-length sequence of instructions that 

will always execute in its entirety (assuming it executes at all)

– in the absence of hardware exceptions, control never enters a 
basic block except at the beginning, and never exits except at 
the end



Introduction

• Code improvement at the level of basic blocks is known as 
local optimization
– elimination of redundant operations (unnecessary loads, common sub-

expression calculations)

– effective instruction scheduling and register allocation

• At higher levels of aggressiveness, compilers employ 
techniques that analyze entire subroutines for further speed 
improvements

• These techniques are known as global optimization
– multi-basic-block versions of redundancy elimination

– instruction scheduling, and register allocation

– code modifications designed to improve the performance of loops



Introduction

• Both global redundancy elimination and loop 
improvement typically employ a control flow graph 
representation of the program
– Use a family of algorithms known as data flow analysis 

(flow of information between basic blocks)

• Recent compilers perform various forms of 
interprocedural code improvement

• Interprocedural improvement is difficult
– subroutines may be called from many different places 

• hard to identify available registers, common subexpressions, etc.

– subroutines are separately compiled



Phases of Code Improvement
• We will concentrate in our discussion on the forms 

of code improvement that tend to achieve the 
largest increases in execution speed, and are most 
widely used
– Compiler phases to implement these improvements is 

shown in Figure 17.1



Phases of Code Improvement



Phases of Code Improvement

• The machine-independent part of the back end 
begins with intermediate code generation
– identifies fragments of the syntax tree that correspond to 

basic blocks

– creates a control flow graph in which each node contains 
a sequence of three-address instructions for an idealized 
machine (unlimited supply of virtual registers)

• The machine-specific part of the back end begins 
with target code generation
– strings the basic blocks together into a linear program

• translates each block into the instruction set of the 
target machine and generating branch instructions that 
correspond to the arcs of the control flow graph



Phases of Code Improvement

• Machine-independent code improvement has 
three separate phases
1. Local redundancy elimination: identifies and 

eliminates redundant loads, stores, and computations 
within each basic block

2. Global redundancy elimination: identifies similar 
redundancies across the boundaries between basic 
blocks (but within the bounds of a single subroutine)

3. Loop improvement: effects several improvements 
specific to loops
• these are particularly important, since most programs spend 

most of their time in loops. 

• Global redundancy elimination and loop improvement may 
actually be subdivided into several separate phases



Phases of Code Improvement

• Machine-specific code improvement has four 
separate phases
– Preliminary and final instruction scheduling  are 

essentially identical (Phases 1 & 3)

– Register allocation (Phase 2) and instruction scheduling 
tend to interfere with one another
• the instruction schedules minimize pipeline stalls which tend to 

increase the demand for architectural registers (register pressure)

• we schedule instructions first, then allocate architectural registers, 
then schedule instructions again
– If it turns out that there aren’t enough architectural registers, the 

register allocator will generate additional load and store instructions 
to spill registers temporarily to memory

– the second round of instruction scheduling attempts to fill any 
delays induced by the extra loads



Peephole Optimization

• A relatively simple way to significantly improve the 
quality of naive code is to run a peephole optimizer 
over the target code
– works by sliding a several instruction window (a peephole) 

over the target code, looking for suboptimal patterns of 
instructions

– the patterns to look for are heuristic
• patterns to match common suboptimal idioms produced by a 

particular front end

• patterns to exploit special instructions available on a given machine

• A few examples are presented in what follows



Peephole Optimization

• Elimination of redundant loads and stores
– The peephole optimizer can often recognize that the 

value produced by a load instruction is already 
available in a register
r2 := r1 + 5
i := r2
r3 := i
r3 := r3 × 3

becomes
r2 := r1 + 5
i := r2
r3 := r2 × 3



Peephole Optimization

• Constant folding

• A naive code generator may produce code that 
performs calculations at run time that could 
actually be performed at compile time
– A peephole optimizer can often recognize such 

code

r2 := 3 × 2

becomes 
r2 := 6



Peephole Optimization
• Constant propagation

– Sometimes we can tell that a variable will have a constant value at 
a particular point in a program

– We can then replace occurrences of the variable with occurrences 
of the constant
r2 := 4
r3 := r1 + r2
r2 := . . .

becomes
r2 := 4
r3 := r1 + 4
r2 := . . .

and then 
r3 := r1 + 4
r2 := . . .



Peephole Optimization

• Common subexpression elimination
– When the same calculation occurs twice within the 

peephole of the optimizer, we can often eliminate the 
second calculation:
r2 := r1 × 5
r2 := r2 + r3
r3 := r1 × 5

becomes
r4 := r1 × 5
r2 := r4 + r3
r3 := r4

– Often, as shown here, an extra register will be needed 
to hold the common value



Peephole Optimization

• It is natural to think of common subexpressions as 
something that could be eliminated at the source 
code level, and programmers are sometimes 
tempted to do so 

• The following, for example,
x = a + b + c;
y = a + b + d;

could be replaced with
t = a + b;
x = t + c;
y = t + d;



Peephole Optimization
• Copy propagation

– Even when we cannot tell that the contents of register b will be 
constant, we may sometimes be able to tell that register b will 
contain the same value as register a

• replace uses of b with uses of a, so long as neither a nor b is modified

r2 := r1
r3 := r1 + r2
r2 := 5

becomes
r2 := r1
r3 := r1 + r1
r2 := 5

and then 
r3 := r1 + r1
r2 := 5



Peephole Optimization

• Strength reduction
– Numeric identities can sometimes be used to replace a 

comparatively expensive instruction with a cheaper one
• In particular, multiplication or division by powers of two can be 

replaced with adds or shifts:

r1 := r2 × 2
becomes 

r1 := r2 + r2 or r1 := r2 << 1

r1 := r2 / 2
becomes 

r1 := r2 >> 1



Peephole Optimization

• Elimination of useless instructions
– Instructions like the following can be dropped 

entirely:
r1 := r1 + 0
r1 := r1 × 1

• Filling of load and branch delays
– Several examples of delay-filling transformations 

are presented in Chapter 5 of the textbook

• Exploitation of the instruction set
– Particularly on CISC machines, sequences of 

simple instructions can often be replaced by a 
smaller number of more complex instructions



Redundancy Elimination in Basic Blocks

• Let’s look at improving intermediate code 
generated from this C program:



Redundancy Elimination in Basic Blocks
• We employ a medium 

level intermediate form 
(IF) for control flow
– Every calculated value is 

placed in a separate 
register

– To emphasize virtual 
registers (of which there 
is an unlimited supply), 
we name them v1, v2, . . 
.

– We use r1, r2, . . . to 
represent architectural 
registers in Section 17.8.



Redundancy Elimination in Basic Blocks

• To improve the code within basic blocks, we need to
– minimize loads and stores
– identify redundant calculations

• There are two techniques usually employed
1. translate the syntax tree for a basic block into an 

expression DAG (directed acyclic graph) in which 
redundant loads and computations are merged into 
individual nodes with multiple parents

2. similar functionality can also be obtained without an 
explicitly graphical program representation, through a 
technique known as local value numbering 

• We describe the last technique below



Redundancy Elimination in Basic Blocks

• Value numbering assigns the same name (a “number”) 
to any two or more symbolically equivalent 
computations (“values”), so that redundant instances 
will be recognizable by their common name

• Our names are virtual registers, which we merge 
whenever they are guaranteed to hold a common value

• While performing local value numbering, we will also 
implement 
– local constant folding
– constant propagation, copy propagation
– common subexpression elimination
– strength reduction
– useless instruction elimination



Redundancy Elimination in Basic Blocks
• Let’s do value numbering for a simpler example:

v1 := x

v2 := 1

v3 := v1 + v2

y := v3

v4 := x

v5 := 1

v6 := v4 + v5

x := v6

v7 := x

v8 := 3

v9 := 1

v10 := v8 + v9

v11 := v7 * v10

v12 := v11 * v9

What the source might look like:

y := x + 1;

x := x + 1;

return x * (3+1) * 1;



Your Turn: Value Numbering
• Perform value numbering optimization on the following:

v1 := x

v2 := 3

v3 := v1 + v2

v4 := 1

v5 := x

v6 := 2

v7 := v4 + v6

v8 := v5 + v7

v9 := v8 - v3



Redundancy Elimination in Basic Blocks



Global Redundancy and 
Data Flow Analysis
• We now concentrate on the elimination of 

redundant loads and computations across the 
boundaries between basic blocks

• We translate the code of our basic blocks into 
static single assignment (SSA) form, which will 
allow us to perform global value numbering

• Once value numbers have been assigned, we shall 
be able to perform 
– global common subexpression elimination
– constant propagation
– copy propagation



Global Redundancy and 
Data Flow Analysis
• In a compiler both the translation to SSA form 

and the various global optimizations would be 
driven by data flow analysis.
– We detail the problems of identifying 

• common subexpressions
• useless store instructions

– We will also give data flow equations for the 
calculation of reaching definitions, used to move 
invariant computations out of loops

• Global redundancy elimination can be structured 
in such a way that it catches local redundancies as 
well, eliminating the need for a separate local pass



Global Redundancy and 
Data Flow Analysis
• Value numbering, as introduced earlier, assigns a 

distinct virtual register name to every 
symbolically distinct value that is loaded or 
computed in a given body of code
– It allows us to recognize when certain loads or 

computations are redundant. 

• The first step in global value numbering is to 
distinguish among the values that may be written 
to a variable in different basic blocks
– We accomplish this step using static single assignment 

(SSA) form



Global Redundancy and 
Data Flow Analysis
• For example, if the instruction v2 := x is 

guaranteed to read the value of x written by the 
instruction x3 := v1, then we replace v2 := x
with v2 := x3

• If we cannot tell which version of x will be read, we 
use a hypothetical function φ to choose among the 
possible alternatives
– we won’t actually have to compute φ-functions at run time

• the only purpose is to help us identify possible code 
improvements

– we will drop them (and the subscripts) prior to target code 
generation



Global Redundancy and 
Data Flow Analysis



• With flow-dependent values determined by φ-
functions, we are now in a position to perform 
global value numbering
– As in local value numbering, the goal is to merge any 

virtual registers that are guaranteed to hold 
symbolically equivalent expressions

– In the local case, we were able to perform a linear pass 
over the code

– We kept a dictionary that mapped loaded and 
computed expressions to the names of virtual registers 
that contained them

Global Redundancy and 
Data Flow Analysis



• This approach does not suffice in the global case, 
because the code may have cycles
– The general solution can be formulated using data flow
– It can also be obtained with a simpler algorithm that 

begins by unifying all expressions with the same top-level 
operator
• In the end, repeatedly separates expressions whose operands are 

distinct
• It is quite similar to the DFA minimization algorithm of Chapter 

2

• We perform this analysis for our running example 
informally

Global Redundancy and 
Data Flow Analysis



Global Redundancy and 
Data Flow Analysis

Reuse registers 
v1 and v2 from 
Block 1

Reuse v1 
and v17



• Many instances of data flow analysis can be cast 
in the following framework: 
1. four sets for each basic block B, called InB, OutB, GenB, 

and KillB; 
2. values for the Gen and Kill sets; 
3. an equation relating the sets for any given block B; 
4. an equation relating the Out set of a given block to the 

In sets of its successors, or relating the In set of the 
block to the Out sets of its predecessors; and (often) 

5. certain initial conditions

Global Redundancy and 
Data Flow Analysis



• The goal of the analysis is to find a fixed point of 
the equations: a consistent set of In and Out sets 
(usually the smallest or the largest) that satisfy 
both the equations and the initial conditions
– Some problems have a single fixed point

– Others may have more than one
• we usually want either the least or the greatest fixed point 

(smallest or largest sets)

Global Redundancy and 
Data Flow Analysis



• In the case of global common subexpression 
elimination, InB is the set of expressions (virtual 
registers) guaranteed to be available at the 
beginning of block B
– These available expressions will all have been set by 

predecessor blocks
– OutB is the set of expressions guaranteed to be 

available at the end of B
– KillB is the set of expressions killed in B: invalidated by 

assignment to one of the variables used to calculate the 
expression, and not subsequently recalculated in B

– GenB is the set of expressions calculated in B and not 
subsequently killed in B

Global Redundancy and 
Data Flow Analysis



• The data flow equations for available 
expression analysis are:

Global Redundancy and 
Data Flow Analysis

• Our initial condition is In1 = : no expressions are 
available at the beginning of execution



• Available expression analysis is known as a 
forward data flow problem, because information 
flows forward across branches: the In set of a 
block depends on the Out sets of its predecessors
– We will see an example of a backward data flow 

problem later 

• We calculate the desired fixed point of our 
equations in an inductive (iterative) fashion, much 
as we computed first and follow sets in Chapter 2

• Our equation for InB uses intersection to insist 
that an expression be available on all paths into B
– In our iterative algorithm, this means that InB can only 

shrink with subsequent iterations

Global Redundancy and 
Data Flow Analysis



Example of Available Expressions 
Analysis

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
v8 := c / 2



Exercise: Apply global value numbering and 
available expressions to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v1+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3



Global Redundancy and 
Data Flow Analysis



Global Redundancy and 
Data Flow Analysis



• We turn our attention to live variable analysis -
very important in any subroutine in which global 
common subexpression analysis has eliminated 
load instructions

• Live variable analysis is a backward flow problem
• It determines which instructions produce values 

that will be needed in the future, allowing us to 
eliminate dead (useless) instructions
– in our example we consider only values written to 

memory and with the elimination of dead stores
– applied to values in virtual registers as well, live 

variable analysis can help to identify other dead 
instructions

Global Redundancy and 
Data Flow Analysis



• For this instance of data flow analysis
– InB is the set of variables live at the beginning of block B
– OutB is the set of variables live at the end of the block
– GenB is the set of variables read in B without first being 

written in B
– KillB is the set of variables written in B without having 

been read first

• The data flow equations are:

Global Redundancy and 
Data Flow Analysis



Running live variable analysis and 
dead code elimination

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
v8 := c / 2



Exercise: Apply live variable analysis and 
dead code elimination to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v1+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3



Global Redundancy and 
Data Flow Analysis


